

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

MATHEMATICS

COMMON TEST

MARCH 2025

MEMO

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

These marking guidelines consist of 11 pages.

Copyright Reserved

Please turn over

1.1.1	G 0:01) ² #(01)		
1.1.1	$S_{21} = 3(21)^2 - 5(21)$	✓A substitution	
	=1218	✓A answer	
110			(2)
1.1.2	$S_{22} = 3(22)^2 - 5(22)$	Parties on the control of the contro	
	= 1342	\checkmark A value of S_{22}	
	$T_{22} = S_{22} - S_{21}$		
	=1342-1218	- Count	
	=124	✓CA answer	220
	0160 2 2 5		(2)
1.1.3	$8162 = 3n^2 - 5n$	✓A equating	
	$3n^2 - 5n - 8162 = 0$	✓A standard form	
	$n = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(-8162)}}{2(3)}$	✓CA substitution	
	2(3)		
	$n = 53$ or $n = -\frac{154}{3}$		
	MARIE AND		
	N/A	✓CA answer (53 only)	
	53 terms have to be added	CA answer (55 only)	(4)
1.2.1	The even-numbered terms form an AS with $a = 7$ and $d = 5$.		
	T_{39} of the AS		
	=a+(n-1)d		
	=7+(39-1)5	✓A substitution	
		✓CA answer	
	= 197	ori unswer	(2)
1.2.2	Sum of the 52 odd-numbered terms = $52 \times 7 = 364$	✓A 52×7	
	Sum of the 51 even-numbered terms		
	$= \frac{n}{2} \Big[2a + (n-1)d \Big]$		
	$=\frac{51}{2}[2(7)+(51-1).5]$	✓CA substitution	
	= 6732	✓CA sum of AS	
	Sum of first 103 terms	To the second of	
	=364+6732	pgimantife	
	= 7096	✓CA answer	
			(4)
1			[14]

2.1.1	9; -27; 81	✓A 9	
		✓A -27 ; 81	
			(2)
2.1.2	r = -3	✓A answer	(1)
2.1,3	No, the series will not converge	✓CA answer (no)	(1)
	r < -1 OR r does not lie between -1 and 1.	✓CA motivation	
2 1 4		/A 12	(2)
2.1.4	$a = 9x \qquad r = -3 \qquad n = 12$	\checkmark A $n=12$	
	$S_n = \frac{a(r^n - 1)}{r - 1}$		
	$9x((-3)^{12}-1)$		
	$=\frac{9x((-3)^{12}-1)}{-3-1}$	✓CA substitution	
10	=-1195740x	✓CA answer	(3)
2.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	2 nd difference = 3	✓ A 2^{nd} difference = 3	
	$a = \frac{2\text{nd difference}}{2} = \frac{3}{2}$	✓CA value of a	
	3a+b=2		
	$b = 2 - 3\left(\frac{3}{2}\right) = -\frac{5}{2}$	✓CA value of b	
	$T_{29} = \frac{3}{2}(29)^2 - \frac{5}{2}(29) + c = 1166$	✓CA substitution in T_{29}	
	c = -23	\checkmark CA value of c	
	$\therefore T_n = \frac{3}{2}n^2 - \frac{5}{2}n - 23$		
	$T_1 = \frac{3}{2}(1)^2 - \frac{5}{2}(1) - 23 = -24$	✓CA answer	
	2 (1) 2 (1) 2 (1)	200	(6)
			[14]

_		T
3.1.1	$f(x) = \frac{2x+3}{-x-3}$	
	$=\frac{2x+3}{-(x+3)}$	\checkmark A $-(x+3)$
	-(x+3)	(x+3)
	-(2x+3)	
	$=\frac{-(2x+3)}{x+3}$	
	-(2x+6-3)	
	$=\frac{-(2x+6-3)}{x+3}$	
	*** **********************************	[2(+2) 2]
	$=\frac{-[2(x+3)-3]}{x+3}$	\checkmark A $\frac{-[2(x+3)-3]}{x+3}$
		x+3
	$= \frac{-2(x+3)}{x+3} + \frac{3}{x+3}$	
	$\therefore f(x) = \frac{3}{x+3} - 2$	(2)
	X + 3	(2)
	OR	OR
	$f(x) = \frac{2x+3}{-x-3}$	
	2003 MOSS	_3
	$=-2+\frac{-3}{-x-3}$	\checkmark A $-2 + \frac{-3}{-x-3}$ (through the
	X 3	method of long division)
	$=-2+\frac{-3}{-(x+3)}$	\checkmark A $-(x+3)$
	No. 20	
	$=-2+\frac{3}{x+3}$	(2)
3.1.2	For <i>y</i> -intercept, let $x = 0$:	
2	$y = \frac{3}{x+3} - 2$	
	The 1970	
30	$y = \frac{3}{0+3} - 2 = -1$	\checkmark A $y = -1$
3	For x-intercept, let $y = 0$:	
	$\frac{3}{x+3} - 2 = 0$	× 3 2 = 0
Ī	x+3	$\checkmark A \frac{3}{x+3} - 2 = 0$
	$\frac{3}{x+3}=2$	
	3	3
51	$x=-\frac{3}{2}$	\checkmark A $x = -\frac{3}{2}$
	2	(3)
EL .		(5)

Common Test March 2025

3.1.3	x = -3 $y = -2$ $x = -3$ $y = -2$	✓CA intercepts ✓A asymptotes ✓A shape
3.1.4	y = -x + c Substitute $(-3; -2)$:	✓A equation of straight line with a gradient of – 1
	-2 = -(-3) + c	with a gradient of 1
	-2 = -(-3) + c $c = -5$	
	c = -3 $y = -x - 5$	✓CA answer
		(2)
3.1.5	$x \in R, \ x \neq -3$	\checkmark A $x \in R$
(a)		\checkmark CA $x \neq -3$
		(2)
3.1.5 (b)	$-3 < x \le -\frac{3}{2}$	\checkmark CA \checkmark CA $-3 < x \le -\frac{3}{2}$
		(2)

Common Test March 2025

3.2.1	At R: $3x + 6 = 0$		
	x = -2 $R(-2; 0)$	✓ A x-coordinate ✓ A y-coordinate	(2)
3.2.2	From symmetry, the <i>x</i> -coordinate at $S = 1$		(2)
	y = a(x+2)(x-1)	$\checkmark CA y = a(x+2)(x-1)$	
	$y = ax^2 + ax - 2a$		
	Substitute $\left(-\frac{1}{2}; 9\right)$: $9 = a\left(-\frac{1}{2}\right)^2 + a\left(-\frac{1}{2}\right) - 2a$	✓CA substitution	
	$9 = -\frac{9}{4}a$		
	a = -4	\checkmark CA value of a	
	$\therefore y = -4x^2 - 4x + 8$	✓CA answer	
	OR	× = × = · · · · · ·	(4)
	$y = a(x+p)^2 + q$	OR	
	$y = a\left(x + \frac{1}{2}\right)^2 + 9$	$\checkmark A y = a \left(x + \frac{1}{2}\right)^2 + 9$	
	Subst. $S(1;0)$ OR Subst. $R(-2;0)$:	(-/	
	$: 0 = a \left(1 + \frac{1}{2} \right)^2 + 9$ $0 = a \left(-2 + \frac{1}{2} \right)^2 + 9$	✓CA substitution	
	$\therefore -9 = a \left(\frac{9}{4}\right)$		
	a = -4	✓CA value of a	
	$\therefore y = -4\left(x + \frac{1}{2}\right)^2 + 9$	✓CA answer	
120	(-2)		(4)
			[20]

4.1.1	$f^{-1}: y = \sqrt{3x}$	
	$f^{-1}: y = \sqrt{3x}$ $f: x = \sqrt{3y}$	\checkmark A swopping x and y
	$x^2 = 3y$	2
	$y = \frac{x^2}{3}; x \ge 0$	$\checkmark A y = \frac{x^2}{3}$ $\checkmark A x \ge 0$
	3 , 22	\checkmark A $x \ge 0$
		(3)
4.1.2	$0 \le x \le 3$ OR $x \in [0; 3]$	✓A ✓A answer
A40-000 080 080	Statement commencers returns r	(2)

4.2.1	$g: y = \left(\frac{1}{3}\right)^x$ OR $g: y = 3^{-x}$	
	$g^{-1}: x = \left(\frac{1}{3}\right)^{y}$ $g^{-1}: x = 3^{-y}$	\checkmark A swopping x and y
	$\therefore y = \log_{\frac{1}{2}} x \qquad \qquad \therefore y = -\log_3 x$	✓A answer
4.2.2	y x $(3;-1)$ g^{-1}	✓CA shape ✓A x-intercept ✓CA coordinates of one more point
		(3)
4.2.3	$y = a \left(\frac{1}{3}\right)^x + 7$	
	Substitute $(-2; 10)$: $10 = a \left(\frac{1}{3}\right)^{-2} + 7$	✓A substitution
	$9a = 3$ $a = \frac{1}{3}$	✓CA answer (2)
4.2.4	$h: y = \left(\frac{1}{3}\right) \cdot \left(\frac{1}{3}\right)^x + 7$	
	From $y = \left(\frac{1}{3}\right)^{x+1} + 7$ to $y = \left(\frac{1}{3}\right)^{x}$:	$\checkmark A \ y = \left(\frac{1}{3}\right)^{x+1} + 7$
	Translation of 1 unit to the right and 7 units downwards. Answer only: full marks	✓A 1 unit to the right ✓A 7 units downwards (3)
0		[15]

5.1.1 $\sin \beta = \frac{4}{5}$ $x^2 - r^2 - y^2 \text{[Pythagoras]}$ $= 5^2 - 4^2$ $= 9$	$\checkmark A \sin \beta = \frac{4}{5}$ $\checkmark A x - \text{value}$
$x = -3$ $\therefore \cos \beta = \frac{-3}{5}$	✓CA answer (3)
$5.1.2 \cos 2\beta = 2\cos^2 \beta - 1$	✓A double ∠ expansion
$=2\left(\frac{-3}{5}\right)^2-1$	✓CA substitution
$=2\left(\frac{9}{25}\right)-1$	
$=\frac{-7}{25}$	✓CA answer
OR 25	(3)
$\cos 2\beta = \cos^2 \beta - \sin^2 \beta$	OR ✓A double ∠ expansion
$= \left(\frac{-3}{5}\right)^2 - \left(\frac{4}{5}\right)^2$	✓CA substitution
$= \frac{9}{25} - \frac{16}{25}$	
$=\frac{-7}{25}$	✓CA answer
OR	(3)
$\cos 2\beta = 1 - 2\sin^2 \beta$	OR ✓A double ∠ expansion
A0 A0	double 2 expansion
$=1-2\left(\frac{4}{5}\right)^2$	✓A substitution
$=1-2\left(\frac{16}{25}\right)$	
$=\frac{-7}{25}$	✓CA answer (3)

5.1.3	$\sin 3\beta = \sin(2\beta + \beta)$	
	$= \sin 2\beta \cos \beta + \cos 2\beta \sin \beta$	✓A compound ∠ expansion
	$= 2\sin\beta\cos\beta\cos\beta + \cos2\beta\sin\beta$	✓A double ∠ expansion
	$=2\left(\frac{4}{5}\right)\left(\frac{-3}{5}\right)\left(\frac{-3}{5}\right)+\left(\frac{-7}{25}\right)\left(\frac{4}{5}\right)$	✓CA substitution
	$=\frac{72}{125}-\frac{28}{125}$	
	$=\frac{44}{125}$	✓CA answer (4)
5.2	$\frac{\sin(-180^{\circ} - \theta)\tan(180^{\circ} - \theta)\cos(-\theta)}{\cos^{2}(90^{\circ} + \theta) + 3\sin^{2}\theta}$	
	$= \frac{\sin \theta - \tan \theta \cdot \cos \theta}{\left(-\sin \theta\right)^2 + 3\sin^2 \theta}$	$\begin{array}{cccc} \checkmark A & \sin \theta & \checkmark A & -\tan \theta \\ \checkmark A & \cos \theta & \checkmark A & -\sin \theta \end{array}$
	$=\frac{\sin\theta\frac{\sin\theta}{\cos\theta}.\cos\theta}{4\sin^2\theta}$	$\checkmark A \tan \theta = \frac{\sin \theta}{\cos \theta}$
	$=-\frac{\sin^2\theta}{4\sin^2\theta}$	
	$=-\frac{1}{4}$	✓CA answer (6)
5.3	$\frac{1}{8}(1-\cos 4x)$	
	$=\frac{1}{8}\Big[1-\cos\big(2\times 2x\big)\Big]$	$\checkmark A \frac{1}{8} \left[1 - \cos(2 \times 2x) \right]$
	$= \frac{1}{8} \Big[1 - \Big(1 - 2\sin^2 2x \Big) \Big]$	$\checkmark A \frac{1}{8} \left[1 - \left(1 - 2\sin^2 2x \right) \right]$
	$=\frac{1}{8}\Big[2\sin^2 2x\Big]$	1
	$=\frac{1}{4}\Big[\sin^2 2x\Big]$	\checkmark A $\frac{1}{4} \left[\sin^2 2x \right]$
	$=\frac{1}{4}(2\sin x\cos x)^2$	$\checkmark A \frac{1}{4} (2\sin x \cos x)^2$
	$=\frac{1}{4}(4)(\sin^2 x.\cos^2 x)$	$\checkmark A \frac{1}{4}(4)(\sin^2 x.\cos^2 x)$
	$= \sin^2 x \cdot \cos^2 x$	(5)
	OR	OR

Common Test March 2025

$\frac{1}{8}(1-\cos 4x)$	
$= \frac{1}{8} \left[1 - \cos(2 \times 2x) \right]$	$\checkmark A \frac{1}{8} \Big[1 - \cos(2 \times 2x) \Big]$
$= \frac{1}{8} \Big[1 - \Big(2\cos^2 2x - 1 \Big) \Big]$	$\checkmark A \frac{1}{8} \Big[1 - \left(2\cos^2 2x - 1 \right) \Big]$
$=\frac{1}{8}\left[2-2\cos^2 2x\right]$	
$=\frac{1}{8}\Big[2\big(1-\cos^22x\big)\Big]$	
$=\frac{1}{8}\Big[2\sin^2 2x\Big]$	$\checkmark A \frac{1}{4} \left[\sin^2 2x \right]$
$= \frac{1}{4} \left[\sin^2 2x \right]$ $= \frac{1}{4} \left(2\sin x \cos x \right)^2$	$\checkmark A \frac{1}{4} (2\sin x \cos x)^2$
$= \frac{1}{4} (4) \left(\sin^2 x \cdot \cos^2 x \right)$	$\checkmark A \frac{1}{4}(4)(\sin^2 x.\cos^2 x)$
$=\sin^2 x.\cos^2 x$	(5)
	[21]

6.1	$\cos(x-45^\circ) = \sin 2x$	
0.1	$\cos(x-45^\circ) = \cos(90^\circ - 2x)$	✓A co-ratio
	$x-45^{\circ} = 90^{\circ} - 2x + k.360^{\circ}$ or $x-45^{\circ} = 360 - (90^{\circ} - 2x) + k.360^{\circ}$	Market Parline Enterprises and
	$3x = 135^{\circ} + k.360^{\circ} \qquad x - 45^{\circ} = 270^{\circ} + 2x + k.360^{\circ}$ $x = 45^{\circ} + k.120^{\circ}, k \in \mathbb{Z}$ $x = 45^{\circ} + k.360^{\circ} \qquad x = 315^{\circ} + k.360^{\circ}$ $x = -315^{\circ} - k.360^{\circ}$ $x = 45^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	✓CA $45^{\circ}+k.120^{\circ}$ ✓A $k \in \mathbb{Z}$
	OR	OR (4)
	$\cos(x-45^\circ) = \sin 2x$	OK
	$\sin \left[90^{\circ} - (x - 45^{\circ}) \right] = \sin 2x$	✓A co-ratio
	$-x+135^{\circ} = 2x + k.360^{\circ}$ or $-x+135^{\circ} = 180^{\circ} - 2x + k.360^{\circ}$ $3x = 135^{\circ} + k.360^{\circ}$ $x = 45^{\circ} + k.360^{\circ}$	✓A both equations
	$x = 45^{\circ} + k.120^{\circ}, \ k \in \mathbb{Z}$ $x = 45^{\circ} + k.360^{\circ}, \ k \in \mathbb{Z}$	✓CA $45^{\circ}+k.120^{\circ}$ ✓A $k \in \mathbb{Z}$ (4)
6.2.1	360°	✓A answer
		(1)
6.2.2 (a)	$(-135^{\circ}; -1)$	✓ A x-coordinate ✓ A y-coordinate (2)
6.2.2 (b)	$\left(-75^{\circ}; -\frac{1}{2}\right)$	✓CA x-coordinate ✓CA y-coordinate (2)
6.2.3	$90^{\circ} < x < 135^{\circ}$ OR $x \in (90^{\circ}; 135^{\circ})$	✓A✓A answer (2)
6.2.4	$ \frac{1}{\sqrt{2}}(\cos x + \sin x) $ =\frac{1}{\sqrt{2}}\cos x + \frac{1}{\sqrt{2}}\sin x \text{ \text{cos } 45°.\cos x + \sin 45°\sin x \text{ = \cos (x - 45°)} \therefore \text{ To solve for } x \text{ if } \sin 2x \geq \cos (x - 45°): \text{ \text{\$x = 45° or } x \in \left[165°;180°\right] \text{ OR } \text{\$x = 45° or } 165° \left\left\left\left\left\left\left\left	✓A $\cos 45^{\circ}$. $\cos x + \sin 45^{\circ} \sin x$ ✓A compound ∠ identity ✓A $x = 45^{\circ}$ ✓CA ✓CA $x \in [165^{\circ};180^{\circ}]$ or
		$165^{\circ} \le x \le 180^{\circ}$
		(5)
Į.		[16]

TOTAL: 100

