

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

GEOGRAPHY

MARKING GUIDELINES

COMMON ASSESSMENT TASK

MARCH 2025 TEST

MARKS: 60

N.B. This marking guidelines consist of 5 pages.

March 2025 Test

QUESTION 1: CLIMATE AND WEATHER

1.1

- 1.1.1 B (Moisture front)
- 1.1.2 A (The interaction of cold, dry air with warm, moist air)
- 1.1.3 A (Intense thunderstorms and rainfall)
- 1.1.4 B (Warm, moist air from the Mozambique Current is forced to rise along the escarpment)
- 1.1.5 C (warm moist air)
- 1.1.6 D (Stronger inflow of warm, moist air from the east) (6 x 1) (6)

1.2

1.2.1 Westwards

From east to west $(1 \times 1)(1)$

1.2.2 Sea surface temperatures must be 26.5°C and above.

Warm ocean where the air pressure is low.

Sufficient moisture. / release of the latent heat / large scale evaporation

Presence of Coriolis force / between 5° N/S to 25° N/S latitudes

Surface convergence / Unstable atmospheric condition

Upper air divergence

Calm windless conditions / Little/less friction / low wind shear

ANY TWO $(2 \times 1)(2)$

1.2.3 Tropical Cyclone Bheki weakened because it moved over cooler ocean waters, reducing the energy available to sustain it. High atmospheric pressure over cold ocean.

Less moisture over the land / Less latent heat

Friction over the land

ANY ONE $(1 \times 1)(1)$

- 1.2.4 Social Floods with result in water-borne diseases (accept examples)
 - Disruption of businesses, transport and utility by floods.
 - Flight disruptions at regional airport by strong winds
 - Temporary closure of ports due to storm surges by strong winds

Environment - Heavy rainfall result in flooding

- Landslides due to flooding
- Coastal erosion due to storm surges
- Disruption of ecosystem and biodiversity due to flooding (accept examples).

ANY TWO (leaner must DISCUSS at least one from both social and environmental) (2 x 2)(4)

- 1.2.5 Authorities should implement an effective early warning system to alert residents in advance.
 - Communities should be educated on evacuation procedures and emergency preparedness through awareness campaigns.
 - Infrastructure in cyclone-prone areas, such as houses, schools, and hospitals, should be strengthened to withstand high winds and flooding.
 - Emergency shelters should be established in safe locations / high lying areas to accommodate displaced individuals.
 - Drainage systems should be upgraded to reduce flooding.
 - Authorities should ensure the availability of emergency supplies like food, water, and medical kits for post-disaster relief.
 - Post-cyclone health interventions, such as water purification and vaccination programmes, can help prevent disease outbreaks caused by contaminated floodwaters.
 ANY TWO

 $(2 \times 2)(4)$

1.3

1.3.1 Higher temperature over the city surrounded by lower temperatures in rural areas.

An urban heat island is a localized area within a city or metropolitan area that experiences significantly higher temperatures than its surrounding rural area.

[CONCEPT]

1.3.2 10°C (34°C - 24°C).

Area A has lower temperatures while area B has higher temperatures.

 $(1 \times 2)(2)$

 $(1 \times 2)(2)$

- 1.3.3 Area B has less / no vegetation which increases temperatures
 Areas A has more vegetation which lowers temperature. (2 x 2)(4)
- 1.3.4 Increase the number of trees and green spaces in urban areas to provide shade and reduce surface temperatures.
 - Create cool roofs (eco roofs/green roofs/ roof gardens) or reflective building materials that help cool down buildings.
 - Develop water features, such as ponds or fountains, in urban areas to help cool the air through evaporation
 - Use reflective or light-colored materials for pavements, roads, and sidewalks
 - Plant more trees along streets and in urban spaces to enhance natural cooling through shade and transpiration, reducing the overall heat retention in these areas.
 - Replace traditional impervious/impermeable surfaces with permeable materials (e.g. permeable paving, grasscrete) that allow water to pass through, reducing surface temperatures and increasing the natural cooling effect.
 - Industrial and commercial decentralisation
 - Education campaigns on green policies/ encourage recycling in cities.
 - Reduce the number of private vehicles in cities / improve public transport

ANY THREE

SA EXAM PAPERS

 $(3 \times 2)(6)$

March 2025 Test

QUESTION 2

-	
-1	
	1

2.2

2.1.1	Y (upper course)	(1)
2.1.2	Z (low)	(1)
2.1.3	Y (flood plain)	(1)
2.1.4	Y (drainage basin)	(1)
2.1.5	Z (laminar)	(1)
	Y (longitudinal)	(1)
	Section Control of the Control of th	$(6 \times 1)(6)$
		38 15-32 55
2.2.1	Drainage density is the total length of all streams and rivers in a drainage basin divided by the total area of the basin.	
	[CONCEPT]	$(1 \times 2)(2)$
2.2.2	A= drainage density is high B= drainage density is low	(2 x 1) (2)

- 2.2.3 Gentle soaking rain enables more water to infiltrate the soil resulting is less density at B.
 - Flat land encourages more infiltration and less surface run-off resulting in lower drainage density
 - More/dense vegetation increases infiltration reducing drainage density
 - Less tributaries at B results in a lower density

- High evaporation rates decrease the amount of water in rivers
- Dry ground absorbs greater amount of moisture resulting in less density
- High degree of porosity increases infiltration reducing drainage density.
- High degree of permeability results in greater infiltration and less drainage density ANY FOUR $(4 \times 2)(8)$

2.3

2.3.1	Meander (do NOT ACCEPT meandering)	$(1 \times 1)(1)$
2.3.2	Lower course	(1 x 1)(1)
2.3.3	Erosion	$(1 \times 1)(1)$

2.3.4

1 mark for slip off slope

1 mark for undercut slope

1 mark for correct diagram

 $(3 \times 1)(3)$

- 2.3.5 Meanders have fertile soil which is good for farming
 - Buildings and infrastructure near the outer banks are at risk of being flooded
 - Increases recreational activities (accept examples)
 - Flat land is useful for human settlement
 - Availability of water for farming (accept examples)
 - Availability of water for domestic use ANY THREE

 $(3 \times 2)(6)$

TOTAL: 60

