

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

SA EXAM PAPERS | This past paper was downloaded from saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

PHYSICAL SCIENCES: PHYSICS (P1) FISIESE WETENSKAPPE: FISIKA (V1)

MAY/JUNE/MEI/JUNIE 2024

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 23 pages. *Hierdie nasienriglyne bestaan uit 23 bladsye.*

reved locurator"

18/05/2024 roved.

PHDBE Madeater Mach 18/5/24 Copyright reserved/Kopiereg voorbehou

Aproved Jusi Moderator DEPARTMENT OF BASIC 18/05/2024 PRIVATE BAG X885, PRETORIA 0001 Approved! 2024 -05- 18 APPROVED MARKING GUIDELINE PEXT. Mucleat PUBLIC EXAMINATION 18 5 202

Physical Sciences P1/Fisiese Wetenskappe V1 2 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

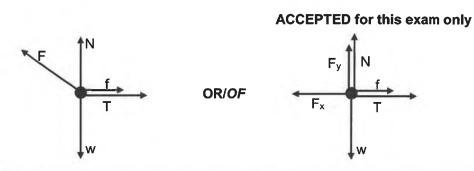
QUESTION 1/VRAAG 1

1.10	C✓✓	(2) [20]
1.9	A✓✓	(2)
1.8	C√√	(2)
1.7	A√√	(2)
1.6	A√√	(2)
1.5	D√√	(2)
1.4	A✓✓	(2)
1.3	C√√	(2)
1.2	B√√	(2)
1.1	B √√	(2)

PRIVAT	EBAG	X895, P	the second se	1A 000
÷i .	2024	-05-	18	
PPRC	VED M	ARKIN	g gui	DELINE

Copyright reserved/Kopiereg voorbehou

Physical Sciences P1/Fisiese Wetenskappe V1 3 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne


QUESTION 2/VRAAG 2

2.1 Marking criteria/Nasienkriteria If any of the underlined key words/phrases in the correct context is omitted deduct 1 mark./Indien enige van die onderstreepte sleutel woorde/frases in die korrekte konteks uitgelaat is, trek 1 punt af.

> When a resultant/net force acts on an object, the object will accelerate in the direction of the force. The <u>acceleration is directly proportional to the resultant/net force</u> and <u>inversely proportional to the mass of the object</u>. $\checkmark \checkmark$ Wanneer 'n resulterende/netto krag op 'n voorwerp inwerk, sal die voorwerp in die rigting van die krag versnel. Die <u>versnelling is direk eweredig is aan die netto krag en omgekeerd eweredig aan die massa van die voorwerp</u>.

OR/OF

The <u>resultant/net force</u> acting on an object is <u>equal to the rate of change of</u> momentum of the object in the direction of the resultant/net force. Die <u>resulterende/netto krag</u> wat op 'n voorwerp inwerk is <u>gelvk aan die tempo</u> van verandering van momentum in die rigting van die resulterende/netto <u>krag</u>. (2 or/of 0)

Ac	cepted labels/Aanvaarde benoemings:
w	Fg/Fw/40,18 N/mg/weight/gravitational force/gewig/gravitasiekrag
Т	FT/tension/spanning/Fstring/Ftou
f	(kinetic) friction/F _f /f _k /f _r /(kinetiese) wrywing/f _w
Ν	F _N /Normal/F _{normal} /F _{normaal} /Normaal
F	Fapp/Ftoeg/49 N/Fa/FA
No	tes/Aantekeninge:
•	Mark awarded for label and arrow./Punt toegeken vir benoeming en pyltjie.
•	Do not penalise for length of arrows since drawing is not to scale./Moenie vir die lengte van die pyltjies penaliseer nie aangesien die tekening nie volgens skaal is nie.
•	Any other additional force(s)./Enige ander addisionele krag(te): Max/Maks 4/5
•	If everything is correct, but no arrows./Indien alles korrek, maar geen pyltjies nie: Max/Maks $\frac{4}{5}$
•	If force(s) do not make contact with the dot./Indien krag(te) nie met die kolletjie kontak maak nie: Max/Maks $\frac{4}{5}$
•	If forces are superimposed/Indien kragte bo-oor mekaar geteken Max/Maks 4/5

(5)

(2)

2.2

SA EXAM PAPERS | This past paper was downloaded from saexampapers.co.za

Physical Sciences P1/Fisiese Wetenskappe V1 4 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

RIVATE BAG X595, PRETORIA 0001

PUBLIC EXAMINATION

Vib

Physical Sciences P1/Fisiese Wetenskappe V1	5	DBE/May/Mei/June/Junie 2024
SC/SS/NSC/NSS – Ma	rking Guidelines/N	lasienriglyne

QUESTION 3/VRAAG 3

3.1	Motion during which the only force acting is gravitational force. (2 or 0)
	Beweging waar die enigste krag wat inwerk, gravitasiekrag/swaartekrag is.
	OR/OF
	Motion under the influence of gravitational force only. $\checkmark\checkmark$ (2 or 0)
	Beweging slegs onder die invloed van gravitasiekrag/swaartekrag.
	NOTE: if projectile is defined 0/2
	NOTA: indien projektiel gedefinieer is 0/2

3.2. NO/*NEE* ✓

(1)

(2)

 Correct substitution into formula./Korrekte vervanging in formule. ✓ Final answer/Finale antwoord: 1,44 s √ 					
OPTION 1/OPSIE 1					
DOWNWARDS AS POSITIVE/	UPWARDS AS POSITIVE/				
AFWAARTS AS POSITIEF	OPWAARTS AS POSITIEF				
$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$				
$15 = 3.4\Delta t + \frac{1}{2}(9.8)\Delta t^2 \checkmark$	$-15 = -3.4\Delta t + \frac{1}{2}(-9.8)\Delta t^2 \checkmark$				
∆t = 1,44 s ✓	∆t = 1,44 s √				
OPTION 2/OPSIE 2					
DOWNWARDS AS POSITIVE/ AFWAARTS AS POSITIEF	UPWARDS AS POSITIVE/ OPWAARTS AS POSITIEF				
v _f ² = v _i ² + 2a∆y	v _f ² = v _i ² + 2a∆y				
$v_f^2 = (3,4)^2 + 2(9,8)(15)$	$v_f^2 = (-3,4)^2 + 2(-9,8)(-15)$				
v _f = 17,48 m·s ⁻¹	$v_f = -17,48 \text{ m} \cdot \text{s}^{-1}$				
v _f = v _i + a∆t ✓	v _f = v _i + a∆t √				
$17.48 = 3.4 + (9.8)\Delta t$	$-17,48 = -3,4 + (-9,8)\Delta t \checkmark$				
∆t = 1,44 s ✓	∆t = 1,44 s ✓				
OPTION 3/OPSIE 3					
DOWNWARDS AS POSITIVE/ AFWAARTS AS POSITIEF	UPWARDS AS POSITIVE/ OPWAARTS AS POSITIEF				
$v_f^2 = v_i^2 + 2a\Delta y$	$v_f^2 = v_i^2 + 2a\Delta y$				
$v_f^{f} = (3,4)^2 + 2(9,8)(15)$	$v_f^2 = (-3,4)^2 + 2(-9,8)(-15)$				
$v_f = (3,4) + 2(3,0)(13)$ $v_f = 17,48 \text{ m}\cdot\text{s}^{-1}$	$v_f = (-3, 4) + 2(-9, 8)(-13)$ $v_f = -17, 48 \text{ m} \cdot \text{s}^{-1}$				
$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$	$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$				
$15 = \left(\frac{3,4 + 17,48}{2}\right) \Delta t$	$-15 = \left(\frac{-3,4 - 17,48}{-15,48}\right) \Delta t$				

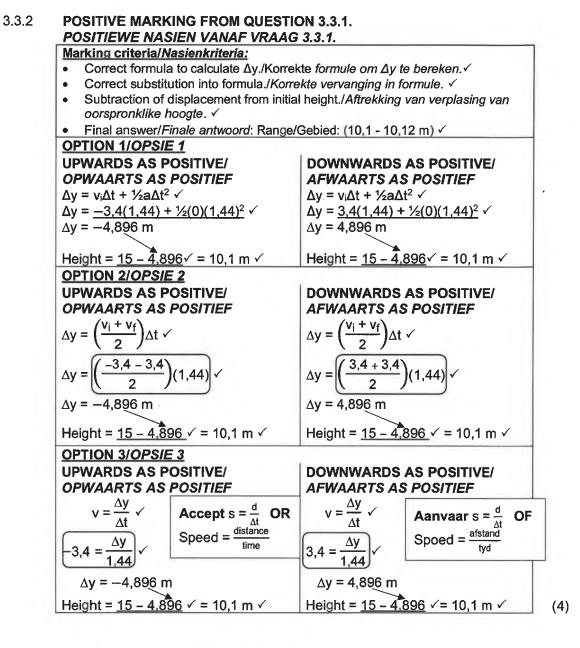
S

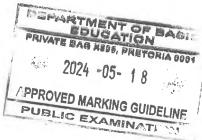
EXA

PERS

(3)

m

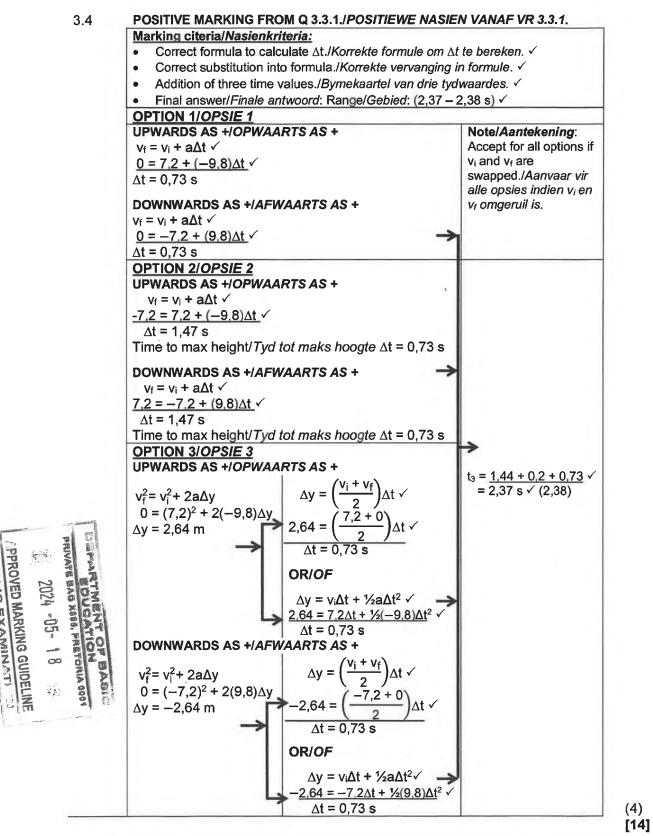

Copyright reserved/Kopiereg voorbehou


PUBLIC EXAMINATI

đ,

2024 -05- 18

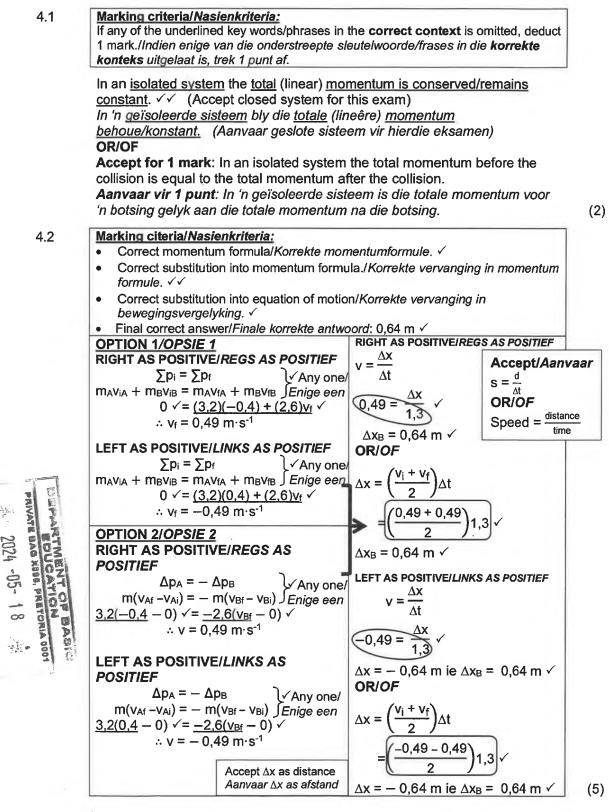
Physical Sciences P1/Fisiese Wetenskappe V1 6 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne



Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

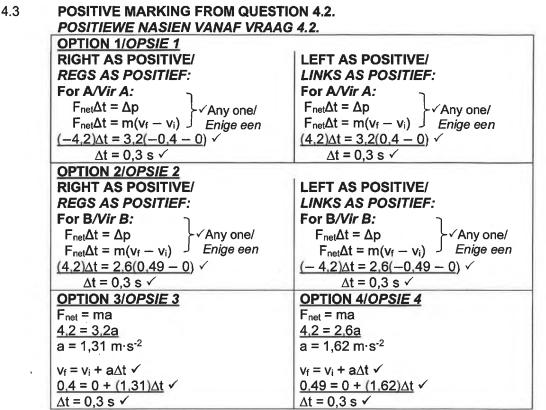
val


Copyright reserved/Kopiereg voorbehou

PUBLIC EXAMINATI

Physical Sciences P1/Fisiese Wetenskappe V1 8 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION 4 /VRAAG 4



Copyright reserved/Kopiereg voorbehou

PURLIC EXAMINATE

M.

Physical Sciences P1/Fisiese Wetenskappe V1 9 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

4.4 LESS THAN ✓

Final momentum/change in momentum/impulse remains constant. \checkmark If mass/inertia increases, velocity decreases/velocity inversely proportional to mass \checkmark

OR

From $F_{net}\Delta t = m\Delta v$ if $F_{net}\Delta t$ remains constant \checkmark and m increase then Δv decreases and v_c decreases \checkmark

OR

From F_{net} = ma if F_{net} remains constant \checkmark and a is inversely proportional to m then m increases and a decreases and therefore v_c decreases. \checkmark

KLEINER AS

Finale momentum/verandering in momentum/impuls bly konstant. Indien massaltraagheid toeneem, sal snelheid afneem/snelheid omgekeerd eweredig aan massa.

OF

PUBLIC EXAMINATE ST

RIVATE BAS X855, PRETORIA

Q

IGATION

DAGE

2024

05

0

Van $F_{net}\Delta t = m\Delta v$ indien $F_{net}\Delta t$ konstant bly en m neem toe dan sal Δv afneem en v_c afneem **OF**

Van F_{net} = ma indien F_{net} konstant bly en a is omgekeerd eweredig aan m dan as m toeneem dan sal a afneem en v_c afneem

(3) [13]

(3)

Copyright reserved/Kopiereg voorbehou

Physical Sciences P1/Fisiese Wetenskappe V1 10 DB SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne DBE/May/Mei/June/Junie 2024

QUESTION 5/VRAAG 5

.1	Marking criteria/Nasienkriteria If any of the underlined key words/phrases in the correct context is omitted, deduct 1 mark./Indien enige van die onderstreepte sleutelwoorde/frases in die korrekte konteks uitgelaat is, trek 1 punt af.			
	The total mechanical energy/sum of the gravitational potential energy and kinetic energy/sum of E_p and E_k in an isolated system is conserved/remains constant. $\checkmark \checkmark$ (Accept closed system for this exam) OR			
	If the sum of the non-conservative forces is zero, then total mechanical energy/sum of the gravitational potential energy and kinetic energy/sum of E_p and E_k is conserved/remains constant.			
	Die <u>totale meganiese energie/som van die gravitasie potensiële energie en</u> <u>kinetiese energie/som van E_P en E_k in 'n geïsoleerde sisteem bly behoue/konstant</u> . (Aanvaar geslote sisteem vir hierdie eksamen) OF			
	Indien die <u>som van die nie-konserwatiewe kragte nul</u> is, sal die <u>totale</u> meganiese energie/som van die gravitasie potensiële energie en kinetiese energie/som van E _P en E _k behoue/konstant bly.			
.2	$\begin{array}{ c c c c c }\hline \hline \textbf{OPTION 1/OPS/E 1} \\ (E_{mech})_{A/Top/Bo/i} &= (E_{mech})_{B/Bottom/Onder/f} \\ (E_{P} + E_{K})_{A/Top/Bo/i} &= (E_{P} + E_{K})_{B/Bottom/Onder/f} \\ (mgh + \frac{1}{2}mv^{2})_{A/Top/Bo/i} &= (mgh + \frac{1}{2}mv^{2})_{B/Bottom/Onder/f} \\ \hline \underline{(18)(9,8)(3) + 0 = 0 + (\frac{1}{2})(18)v^{2}} \checkmark \\ \hline \end{array} \right) \checkmark = 7.67 \text{ m } \text{ or } 1.67 \text{ m} \text{ or } 1.6$			
	$\frac{v = 7,67 \text{ m} \cdot \text{s}^{-1} \checkmark}{\frac{\text{OPTION 2/OPSIE 2}}{W_{nc} = \Delta K + \Delta U}}$ $W_{nc} = \frac{1}{2}m(v_{f}^{2} - v_{i}^{2}) + mg(h_{f} - h_{i})}{W_{nc} = \frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2} + mgh_{f} - mgh_{i}}{mgh_{bottom} - mgh_{top} = -(\frac{1}{2}mv_{f}^{2} - \frac{1}{2}mv_{i}^{2})}}$ $AE_{k} = -\Delta E_{p}$ $AE_{k} = -\Delta E_{p}$			
	$\frac{0 = \frac{1}{2}(18)(v_{f}^{2} - 0^{2}) + (18)(9,8)(0 - 3)}{v = 7,67 \text{ m} \cdot \text{s}^{-1} \cdot \text{or}^{-1} \cdot \text{OR}} \sqrt{\frac{1}{2}(18)(v_{f}^{2} - 0^{2}) = -[(18)(9,8)(0 - 3)]}{0 \text{ PTION } 3/OPSIE 3}}$			
	$ \begin{array}{c} \hline W_{\text{net}} = \Delta E_k \\ mg\Delta y \cos\theta = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \\ \hline (18)(9,8)(3)\cos0^\circ = \frac{1}{2}(18)v_f^2 - 0 \\ v = 7,67 \text{ m} \cdot \text{s}^{-1} \\ \hline \end{array} \right) \checkmark \ \ \ \ \ \ \ \ \ \ \ \ \$			
	PRIVATE BAG X655, PRETORIA 0001			
	2024 -05- 1 8			
	PUBLIC EXAMINATION			

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

EXAN

APERS

Vinh

Physical Sciences P1/Fisiese Wetenskappe V1 11 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

	itgelaat is, trek 1 punt af.
	<u>otal work done</u> (on an object) is <u>equal</u> to the <u>change</u> in the objec <u>ergy</u> . ✓✓
	<u>o/totale arbeid</u> wat (op 'n voorwerp) verrig is, is <u>gelyk</u> aan d ing in die voorwerp se <u>kinetiese energie</u> .
OR/OF	
	<u>done</u> on an object by a <u>resultant/net force</u> is <u>equal to the change</u> t's kinetic energy. ✓✓
	d <u>verrig</u> op 'n voorwerp deur 'n <u>resultante/netto krag</u> is <u>gelyk</u> aan d
	ing in die voorwerp se <u>kinetiese energie</u> .
POSITIV	E MARKING FROM QUESTION 5.2.
POSITIE	WE NASIEN VANAF VRAAG 5.2.
	WE NASIEN VANAF VRAAG 5.2. 1/OPSIE 1
	WE NASIEN VANAF VRAAG 5.2. 1/OPSIE 1
OPTION	$ \begin{array}{c} \hline \textbf{WE NASIEN VANAF VRAAG 5.2.} \\ \hline \textbf{1/OPSIE 1} \\ W_{net} = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \\ W_f = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \\ \end{array} \right _{\checkmark} \begin{array}{c} \checkmark \text{Any one}/Enige \ een \end{array} $
OPTION f∆xcc	$ \begin{array}{c} \hline \textbf{WE NASIEN VANAF VRAAG 5.2.} \\ \hline \textbf{1/OPSIE 1} \\ W_{net} = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \\ W_f = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \\ s180^\circ = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \end{array} \right\} \checkmark Any one/Enige een $
OPTION f∆xcc	$ \begin{array}{c} \hline \textbf{WE NASIEN VANAF VRAAG 5.2.} \\ \hline \textbf{1/OPSIE 1} \\ W_{net} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \\ W_f = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \\ s180^\circ = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \\ \hline -1) \ \checkmark = \frac{1}{2}(18)[(0)^2 - (7,67)^2] \ \checkmark \end{array} $
<u>6</u> Δxcc (40,6)∆x($ \begin{array}{c} \hline \textbf{WE NASIEN VANAF VRAAG 5.2.} \\ \hline \textbf{1/OPSIE 1} \\ \hline \textbf{W}_{net} = \Delta \textbf{E}_k \ / \ \textbf{E}_{kf} - \textbf{E}_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{W}_f = \Delta \textbf{E}_k \ / \ \textbf{E}_{kf} - \textbf{E}_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{s}180^\circ = \Delta \textbf{E}_k \ / \ \textbf{E}_{kf} - \textbf{E}_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{-1)} \ \checkmark \ = \ \underline{1_2(18)[(0)^2 - (7.67)^2]} \ \checkmark \\ \hline \Delta x = 13,04 \ m \ \checkmark \ \textbf{Range/Gebied: (13,03 - 13,04 \ m)} \end{array} $
<u>6</u> Δxcc (40,6)∆x($ \begin{array}{c} \hline \textbf{WE NASIEN VANAF VRAAG 5.2.} \\ \hline \textbf{1/OPSIE 1} \\ W_{net} = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \\ W_f = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \\ s180^\circ = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \\ \hline \underline{-1} \checkmark = \frac{1}{2}(18)[(0)^2 - (7,67)^2] \checkmark \\ \Delta x = 13,04 \text{ m} \checkmark \text{ Range/Gebied: (13,03 - 13,04 \text{ m})} \\ \hline \textbf{2/OPSIE 2} \end{array} $
<u>6</u> Δxcc (40,6)∆x($\frac{WE \text{ NASIEN VANAF VRAAG 5.2.}}{1/OPSIE 1}$ $W_{net} = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$ $W_f = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$ $s180^\circ = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$ $-1) \checkmark = \frac{1}{2}(18)[(0)^2 - (7.67)^2] \checkmark$ $\Delta x = 13,04 \text{ m} \checkmark \text{ Range/Gebied: (13,03 - 13,04 \text{ m})}$ $2/OPSIE 2$ $W_{ne} = \Delta E_n + \Delta E_k$
<u>6</u> Δxcc (40,6)∆x($\frac{WE \text{ NASIEN VANAF VRAAG 5.2.}}{1/OPSIE 1}$ $W_{net} = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$ $W_f = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$ $S180^\circ = \Delta E_k / E_{kf} - E_{ki} / \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$ $\xrightarrow{-1)} \checkmark = \frac{1}{2}(18)[(0)^2 - (7.67)^2] \checkmark$ $\Delta x = 13,04 \text{ m} \checkmark \text{ Range/Gebied: (13,03 - 13,04 \text{ m})}$ $\frac{2/OPSIE 2}{W_{nc} = mg(h_c - h_B) + \frac{1}{2}m(v_f^2 - v_i^2)}$
<u>6</u> Δxcc (40,6)∆x($ \begin{array}{c} \hline \textbf{WE NASIEN VANAF VRAAG 5.2.} \\ \hline \textbf{1/OPSIE 1} \\ \hline \textbf{W}_{net} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{W}_f = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \frac{13,04 \ m \ \checkmark \ Range/Gebied: \ (13,03 \ - \ 13,04 \ m) \\ \hline \textbf{S180^\circ} = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(v_f^2 \ - v_i^2) \\ \hline \textbf{W}_f = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(v_f^2 \ - v_i^2) \\ \hline \textbf{W}_{f} = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(v_f^2 \ - v_i^2) \\ \hline \textbf{W}_{f} = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(v_f^2 \ - v_i^2) \\ \hline \textbf{W}_{f} = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(v_f^2 \ - v_i^2) \\ \hline \textbf{W}_{f} = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(v_f^2 \ - v_i^2) \\ \hline \textbf{W}_{f} = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(h_c \ - h_B) \ + \ 1_2 m(h_c \ - v_i^2) \\ \hline \textbf{W}_{f} = \Delta E_{f} \ $
<u>f</u> Δxcc (40,6)Δx(OPTION	$ \begin{array}{c} \hline \textbf{WE NASIEN VANAF VRAAG 5.2.} \\ \hline \textbf{I/OPSIE 1} \\ \hline \textbf{W}_{net} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{W}_f = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{S180}^\circ = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{-1)} \ \checkmark \ \textbf{E}_{k} \ / \ \textbf{E}_{kf} - E_{ki} \ / \ 1_2 mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{\Delta x} = 13,04 \ m \ \checkmark \ \textbf{Range/Gebied:} \ (13,03 - 13,04 \ m) \\ \hline \textbf{2/OPSIE 2} \\ \hline \textbf{W}_{nc} = \Delta E_p + \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_C - h_B) + \frac{1}{2} m(v_f^2 - v_i^2) \\ \hline \textbf{W}_f = \Delta E_p + \Delta E_k \\ \hline \textbf{M}_{kf} = \Delta E_p + \Delta E_k \\ \hline \textbf{M}_{kf} = \Delta E_p + \Delta E_k \\ \hline \textbf{M}_{kf} = mg\Delta h + \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{W}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_f^2 - \frac{1}{2} mv_i^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_k^2 - \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_k^2 - \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_k^2 - \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_k^2 - \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_k^2 - \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_k^2 - \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \textbf{M}_{kf} + \frac{1}{2} mv_k^2 - \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \frac{1}{2} mv_k^2 - \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \frac{1}{2} mv_k^2 - \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \frac{1}{2} mv_k^2 + \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \frac{1}{2} mv_k^2 + \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \frac{1}{2} mv_k^2 + \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \frac{1}{2} mv_k^2 + \frac{1}{2} mv_k^2 \\ \hline \textbf{M}_{kf} = \frac{1}{2} mv_k^2 + \frac{1}{2} mv_k^2 \\$
<u>f</u> Δxcc (40,6)Δx(OPTION	$ \begin{array}{c} \hline \textbf{WE NASIEN VANAF VRAAG 5.2.} \\ \hline \textbf{1/OPSIE 1} \\ \hline \textbf{W}_{net} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{W}_f = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_k \ / \ E_{kf} - E_{ki} \ / \ 1_2 mv_f^2 \ - \ 1_2 mv_i^2 \\ \hline \textbf{S180^\circ} = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(v_f^2 \ - v_i^2) \\ \hline \textbf{W}_f = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(v_f^2 \ - v_i^2) \\ \hline \textbf{W}_{f} = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(v_f^2 \ - v_i^2) \\ \hline \textbf{W}_{f} = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(v_f^2 \ - v_i^2) \\ \hline \textbf{W}_{f} = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(v_f^2 \ - v_i^2) \\ \hline \textbf{W}_{f} = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_B) \ + \ 1_2 m(h_c^2 \ - h_b^2) \ + \ 1_2 m(h_c^2 \ - h_b^2) \\ \hline \textbf{W}_{f} = \Delta E_p \ + \ \Delta E_k \\ \hline \textbf{W}_{nc} = mg(h_c \ - h_b \ + \ 1_2 mv_b^2 \ - \ 1_2 mv_b^2 \ + \ 1_2 mv_b$

5.5 Smaller than/*Kleiner* as ✓

- Total mechanical/Gravitational potential energy (at A) is less √ Totale meganiese/Gravitasie potensiële energie (by A) is minder
- Velocity(speed) <u>at B</u> is less/Kinetic energy <u>at B</u>/ΔE_k will be less <u>from B to</u> <u>C/rest</u> ✓

Snelheid(spoed) <u>by B</u> is minder/Kinetiese energie <u>by B</u>/ ΔE_k sal minder wees <u>vanaf B tot C/rus</u>

(3) **[14]**

EDUCATION PRIVATE BAG X895, PRETORIA 0001 2024 -05- 1 13143 **APPROVED MARKING GUIDELINE** PUBLIC EXAMINATION

 \mathbf{FRS}

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

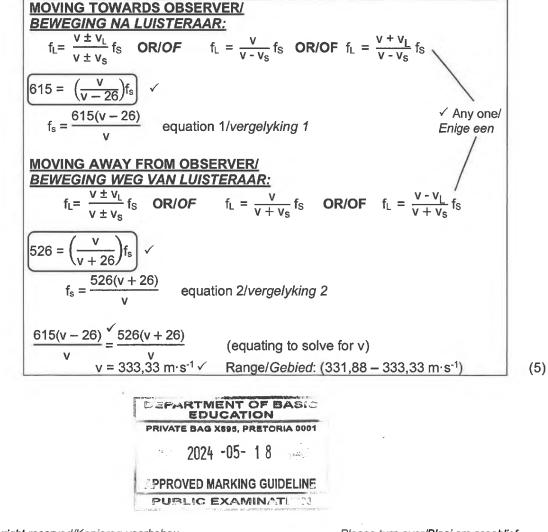
Physical Sciences P1/Fisiese Wetenskappe V1 12 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION 6/VRAAG 6

6.1 <u>Marking criteria/Nasienkriteria</u> If any of the underlined key words/phrases in the correct context is omitted, deduct 1 mark./Indien enige van die onderstreepte sleutel woorde/frases in die korrekte konteks uitgelaat is, trek 1 punt af.

It is the (apparent) <u>change in frequency/pitch</u> of the sound (detected by a listener) because the <u>sound source and the listener have different velocities</u> relative to the medium of sound propagation. \checkmark

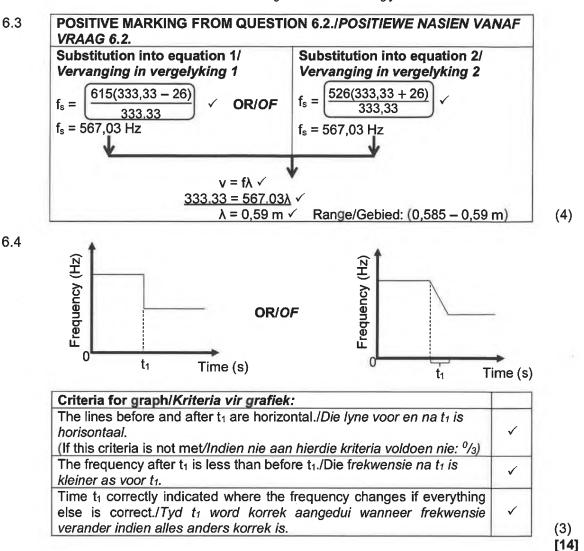
Dit is die (skynbare) <u>verandering in frekwensie/toonhoogte</u> van die klank (waargeneem deur 'n luisteraar) omdat die <u>klankbron en die luisteraar</u> verskillende snelhede relatief tot die medium van klankvoortplanting het.

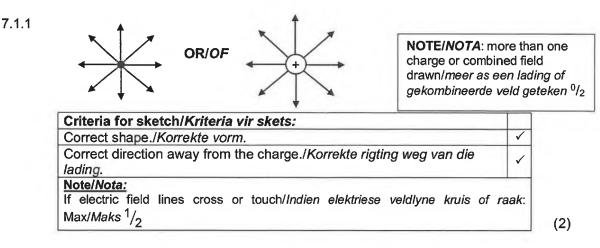

OR/OF

6.2

An (apparent) <u>change in</u> (observed/detected) <u>frequency/pitch</u> as a result of the <u>relative motion between a source and an observer</u> (listener) $\checkmark \checkmark$. *'n* (*Skynbare*) <u>verandering in</u> (waargenome) <u>frekwensie/toonhoogte</u> as gevolg

van die <u>relatiewe beweging tussen die bron en 'n waarnemer (</u>luisteraar).


(2)


Copyright reserved/Kopiereg voorbehou

A

Physical Sciences P1/Fisiese Wetenskappe V1 13 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION 7/VRAAG 7

EDUCATION PRIVATE BAG X895, PRETORIA 5001

PPROVED MARKING GUIDELINE

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

M

Physical Sciences P1/Fisiese Wetenskappe V1 14 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

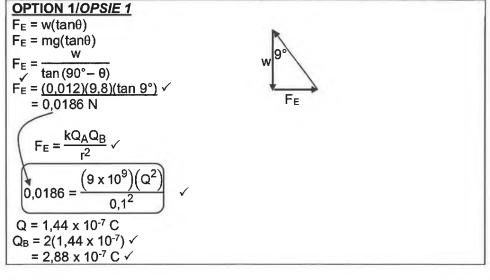
7.1.2

$$E = \frac{kQ}{r^2} \checkmark$$

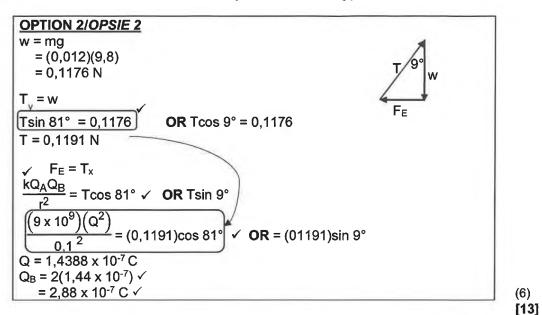
$$= \underbrace{\frac{(9 \times 10^9)(4 \times 10^{-9})}{(0,025)^2}}_{= 5,76 \times 10^4 \text{ N} \cdot \text{C}^{-1}} \checkmark (57\ 600\ \text{N} \cdot \text{C}^{-1})$$

(3)

7.2.1 Marking criteria/Nasienkriteria If any of the underlined key words/phrases in the correct context is omitted, deduct 1 mark./Indien enige van die onderstreepte sleutelwoorde/frases in die korrekte konteks uitgelaat is, trek 1 punt af. The magnitude of the electrostatic force exerted by one point charge on


another is <u>directly proportional to the product</u> of the magnitudes <u>of the</u> <u>charges</u> and <u>inversely proportional to the square of the distance between</u> them. $\sqrt{\checkmark}$

Die grootte van die <u>elektrostatiese krag</u> wat een puntlading op 'n ander uitoefen, is <u>direk eweredig aan die produk van</u> die grootte van <u>die ladings</u> en <u>omgekeerd eweredig aan die kwadraat van die afstand tussen hulle.</u> **NOTE/NOTA**: If mass is mentioned/Indien massa genoem ⁰/₂


(2)

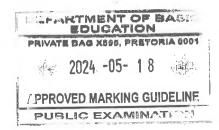
7.2.2 Marking citeria/Nasienkriteria:

- Correct substitution of mg with angle 9° or 81°/Korrekte vervanging van mg met hoek 9° of 81°√
- Correct trig-expression equated to F_E /Korrekte trig-uitdrukking gelykstel aan $F_E \checkmark$
- Correct Coulombs' formula/Korrekte Coulomb-formule ✓
- Correct substitution into F_E/Coulombs' formula/Korrekte vervanging in F_E/Coulomb-formule ✓
- Calculating 2Q/Berekening van 2Q ✓
- Final correct answer/Finale korrekte antwoord: Range/Gebied (2,88 x 10⁻⁷ − 2,98 x 10⁻⁷ C) ✓

Copyright reserved/Kopiereg voorbehou PRIVATE PAG X995, PRETORIA 8001 2024 - 05- 18 FAM W PROVED MARKING GUIDELINE PURALICE EXAMINATION Physical Sciences P1/Fisiese Wetenskappe V1 15 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION 8/VRAAG 8

8.1 The resistor/ R_z is short circuited./*Die resistor*/ R_z word gekortsluit. \checkmark

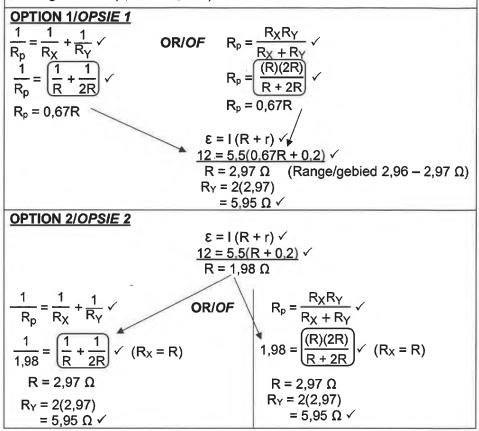

OR/OF

Current follows the path of least resistance./Stroom volg die pad van minste weerstand.

OR/OF

Branch with switch has no resistance./ Tak met skakelaar het geen weerstand nie.

(1)


Copyright reserved/Kopiereg voorbehou

MA

Physical Sciences P1/Fisiese Wetenskappe V1 16 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

8.2

- Marking citeria/Nasienkriteria:
 Correct emf or V_{int} formula/Korrekte emk of V_{int}-formule. ✓
- Correct substitution into emf or V_{int} formula./Korrekte vervanging in emk of V_{int} formule. ✓
- Correct R_p formula ($R_X = R$)/Korrekte R_p -formule ($R_X = R$) \checkmark
- Correct substitution into R_p formula./Korrekte vervanging in R_p-formule
 Final correct answer/Finale korrekte antwoord:
- Range/*Gebied*: (5,92 Ω 5,96 Ω) ✓



Copyright reserved/Kopiereg voorbehou

1---KN 11

SA EXAM PAPERS | This past paper was downloaded from saexampapers.co.za

Physical Sciences P1/Fisiese Wetenskappe V1 17 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

(5)

PRIVAT		Kabs, P	And in case of the local division of the loc	NA 0001
	2024	-05-	18	
(PPRO	VED M	ARKIN	g gui	DELINF

Copyright reserved/Kopiereg voorbehou

110

Physical Sciences P1/Fisiese Wetenskappe V1 18 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

8.3 **POSITIVE MARKING FROM QUESTION 8.2. (Take the values of range into account)**

POSITIEWE NASIEN VANAF VRAAG 8.2. (Neem waardes van gebied in ag)

$V_p = I_T R_p$	$I_x = \frac{2}{3} (5,5) \checkmark$	OR/OF
= <u>(5,5)(1,98)</u>	= 3,67 A	$I_X = \frac{V_p}{R_X}$
OR/OF	OR/OF Bu	$= \underbrace{\begin{array}{c}10,9\\2,97\end{array}}^{\checkmark}$
$\varepsilon = I (R + r)$	$I_{X} = \frac{R_{II}}{R_{X}} I_{\text{total}}$	= 3,67 A OR/OF
$\varepsilon = V_{ext} + Ir$ $12 = V_{ext} + 5,5(0,2) \checkmark$	$=\frac{1,98}{2,97}(5,5)$	I _X = 5,5 – 1,83 ✓
$V_{\text{ext}} = 10,9 \text{ V}$ $V_{p} = 10,9 \text{ V}$	= 3,67 A	= 3,67 A
Y	¥	
OPTION 1/OPSIE 1	OPTION 21OPSIE 2	OPTION 3/OPSIE 3
P = I ² R ✓	$P = \frac{V^2}{R} \checkmark$	P = VI ✓
= <u>(3,67)²(2,97)</u> √	$=\left(\frac{10,9^2}{10,9^2}\right)\sqrt{10}$	= <u>(10,9)(3,67)</u> ✓ = 40 W ✓
= 40 W ✓	= <u>2.97</u> = 40 W √	
= 40 W ✓	= 40 W V	ated in 8.2 award 4 marks

(4)

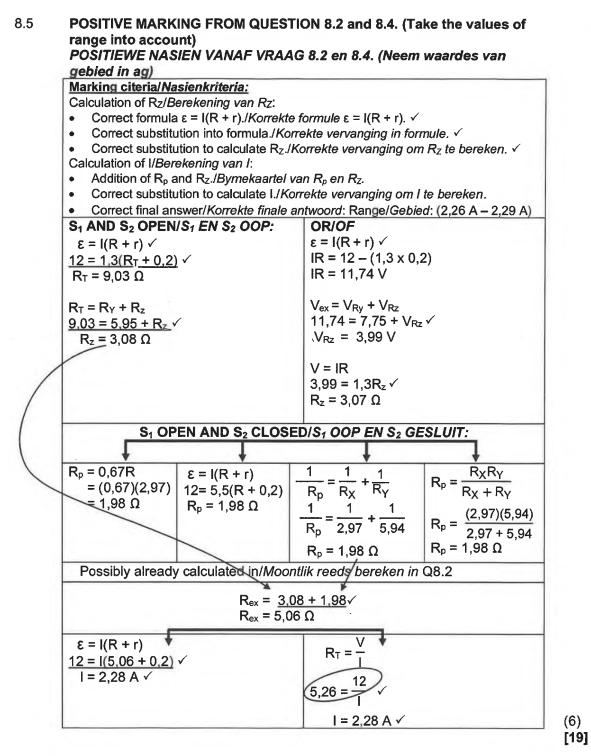
8.4 **POSITIVE MARKING FROM QUESTION 8.2. (Take the values of range into account)**

POSITIEWE NASIEN VANAF VRAAG 8.2. (Neem waardes van gebied in ag)

V = IR√

= 1,3(5,95) 🗸

= 7,72 V ✓ Range/*Gebied*: (7,7 – 7,75 V)


(3)

	RTMI	CAT	of e	ASIC
PRIVAT	BAG	(895, P	RETO	1A 0001
	2024	-05-	18	
				DELINE
PUP	LICI	EXAN	AIN A	TI II

Copyright reserved/Kopiereg voorbehou

PERS

Physical Sciences P1/Fisiese Wetenskappe V1 19 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

Copyright reserved/Kopiereg voorbehou Please turn over/Blaai om asseblief

Physical Sciences P1/Fisiese Wetenskappe V1 20 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION 9/VRAAG 9

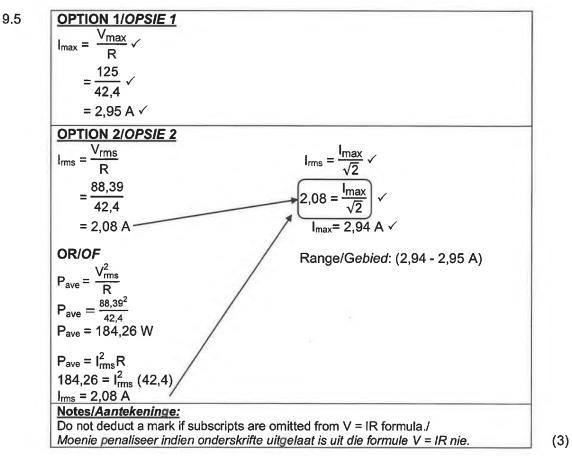
.2 Mechanical/Kinetic to electrical energy. ✓ Meganiese/Kineties na elektriese energie.

(1)

9.3 Marking criteria/Nasienkriteria

If any of the underlined key words/phrases in the **correct context** is omitted deduct 1 mark./Indien enige van die onderstreepte sleutelwoorde/frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

The rms potential difference is the <u>alternating current potential difference</u> which dissipates/produces <u>the same amount of energy/heating effect</u> as an <u>equivalent DC potential difference</u>. \checkmark

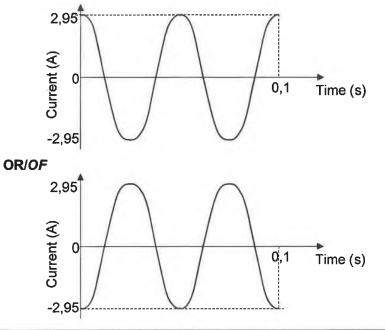

Die wgk-potensiaalverskil is die <u>wisselstroom potensiaalverskil</u> wat <u>dieselfde</u> <u>hoeveelheid energie/verhittingseffek</u> verbruik/vervaardig as die <u>ekwivalente</u> <u>GS-potensiaalverskil</u>.

$$V_{\rm rms} = \frac{V_{\rm max}}{\sqrt{2}} \checkmark$$
$$= \frac{125}{\sqrt{2}} \checkmark$$
$$= 88,39 \lor \checkmark$$

9

(3)

(2)



Copyright reserved/Kopiereg voorbehou

RTMENT OF BASI EDUCATION 11+ RIVATE BAG X895, PRETORIA 000 PPROVED MARKING GUIDELINF ABASNAT

Physical Sciences P1/Fisiese Wetenskappe V1 21 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

9.6 POSITIVE MARKING FROM 9.5/POSITIEWE NASIEN VANAF 9.5

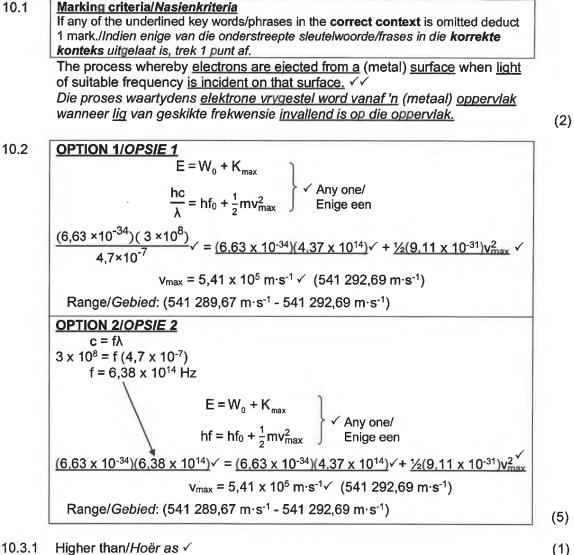
Criteria for graph/Kriteria vir grafiek	
Two complete cycles indicated./Twee volledige siklusse aangedui.	✓
Graph stops at 0,1 s OR one cycle in 0,05 s./	
Grafiek stop by 0,1 s OF een siklus in 0,05 s	· ·
Maximum current (2,94/2,95 A) as a positive or negative value correctly	
indicated./	↓
Maksimum stroom (2,94/2,95 A) as 'n positiewe of negatiewe waarde	ľ
korrek aangedui.	
Correct shape (cosine graph)./Korrekte vorm (cosinus grafiek)	\checkmark

(4) **[15]**

EDUCATION PRIVATE BAG X895, PRETORIA 0001 2024 -05- 18 PPROVED MARKING GUIDELINE PUBLIC EXAMINAT

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief


-ľ

RS

Jul

Physical Sciences P1/Fisiese Wetenskappe V1 22 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS - Marking Guidelines/Nasienriglyne

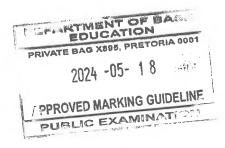
QUESTION 10/VRAAG 10

- 10.3.1 Higher than/Hoër as ✓
- 10.3.2 (Photons of UV light) eject electrons (from the disc/Zn). ✓
 - The negative charge on the electroscope decreases/becomes zero. ✓
 - The electrostatic/repulsive force on the foil decreases/becomes zero. ✓

(3)

- (Fotone van UV lig) stel elektrone vry (vanaf die skyf/Zn).
- Die negatiewe lading op die elektroskoop verlaag/word nul.
- Die elektrostatiese/afstotende krag op die foelie verlaag/word nul.

-PARTMENT OF BAS. Copyright reserved/Kopiereg voorbehou EDUCATION PRIVATE BAG X895, PRETORIA 0001 2024 -05- 18 PPROVED MARKING GUIDELINF PUBLIC EX


Physical Sciences P1/Fisiese Wetenskappe V1 23 DBE/May/Mei/June/Junie 2024 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

10.3.3 _No/Nee ✓

(Increasing the intensity increases the number of photons) does not increase the energy of the photon(s) OR photons will still have the same energy OR frequency stays the same/does not increase √
 (Verhoging van intensiteit verhoog die aantal fotone) en nie die energie van die foton(e) nie OF fotone sal nog steeds dieselfde enegie besit OF frekwensie bly dieselfde/sal nie toeneem nie.

(2) **[13]**

TOTAL/*TOTAAL*: 150

Copyright reserved/Kopiereg voorbehou

