

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

MATHEMATICS P2

PREPARATORY EXAMINATION

SEPTEMBER 2024

MEMO

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

These marking guidelines consist of 14 pages.

Copyright Reserved

- If a candidate answered a QUESTION TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answer in order to solve a problem is unacceptable.

	GEOMETRY		
s	S A mark for a correct statement (A statement mark is independent of a reason.)		
R	R A mark for a correct reason (A reason mark may only be awarded if the statement is correct.)		
S/R	S/R Award a mark if the statement AND reason are both correct.		

QUESTION 1

Penalise only once for incorrect rounding in Question 1.

Penaii	se only once for incorred	t rounding in Question	on 1.	Ī	
1.1.1		Iso accept: 13,79 ousand rand	Answer only: Full marks	✓A 165 500 in numerator ✓CA answer	
		13,79 instead of R13 79 ise again for this mistal			(2)
1.1.2	Standard deviation = R4	404		✓A answer	(-/
					(1)
1.2	R13 792 +R4 404 = R18 2 employees earn a sala		ard deviation	✓CA R18 196 ✓CA 2 employees	
	above the mean.		Answer only: Full marks		(2)
1.3	a = 8, 45		-	✓A correct a value	
	b = 0,45		Answer only:	✓A correct b value	
	$\hat{y} = 0,45x + 8,45$		Full marks	✓ CA answer	
	- 0.04			/ •	(3)
1.4	r=0,94			✓A answer	(1)
1.5	$\hat{y} = 0,45(30)+8,45$			✓CA substitution	
	ŷ = 21,95				
	∴ R21 950			✓CA answer	(2)
	OR			OR	
	R21 804 (calculator)	NOOM		✓✓ CA CA	(2)

1.6	Yes. $r=0,94$ implies a strong correlation between employee experience and monthly salary and therefore a prediction would be reliable.	✓CA answer ✓CA justification	(2)
	OR	OR	
	Yes. $r=0,94$, which is close to 1, and therefore implies a strong correlation between employee experience and monthly salary and therefore a prediction would be reliable.	✓CA answer ✓CA justification	(2)
			[13]

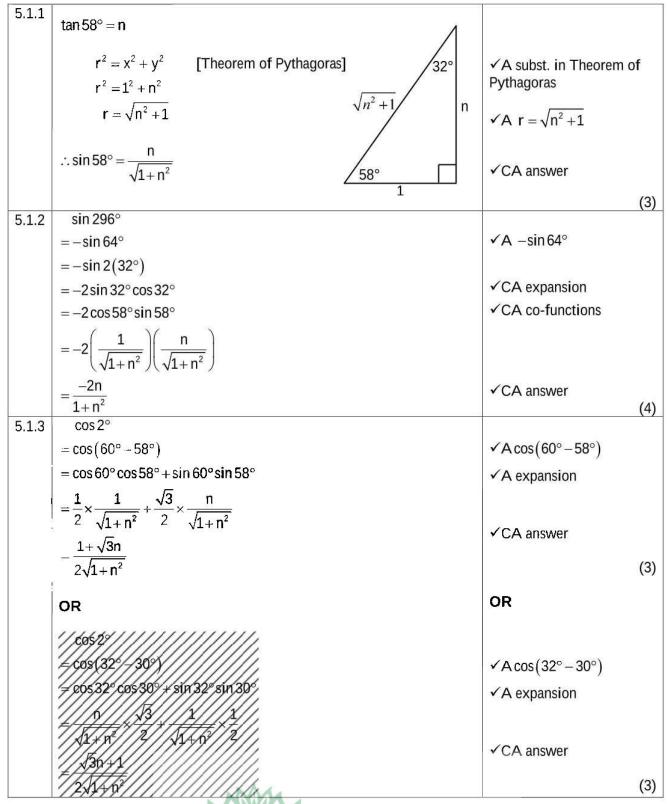
QUESTION 2

2.1	5500	✓ A answer
		(1)
2.2	$Q_1 = 29$ (accept 28 – 29)	✓A value of Q₁
	$Q_3 = 39$ (accept 38 – 39)	✓A value of Q ₃
	IQR = 10 (accept 9 – 11)	✓CA answer
	, , , ,	(3)
2.3	650 5500 (accept 620 – 700)	✓A numerator in range 620 to 700
	=11,82% (accept 11,27% - 12,73%)	✓CA answer
		(2)
		[6]

QUESTION 3

3.1	$m_{AB} = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{-2 - 4}{-6 - 0}$	✓A substitution
	$ \begin{array}{c} -6-0 \\ =1 \end{array} $	✓CA answer
		(2)
3.2	$m_{CD} = m_{AB} = 1$	✓CA m _{CD} =1
	y = mx + c	
	Substitute (10; -1) and $m_{CD} = 1$:	
	-1=1(10)+c	✓CA substitution of gradient
	c = -11	and point
	y = 1x - 11	✓CA answer
		(3)

SA EXAM PAPERS


3.3	Midpoint of AC is the same as the midpoin [diagonals of parm. bisect each other] $\therefore \text{ Midpoint of AC}$ $= M\left(\frac{-6+10}{2}; \frac{-2-1}{2}\right)$	t of BD	✓A midpoint of BD	
	$= M\left(2; \frac{-3}{2}\right)$	Answer only: Full marks	✓CA x coordinate ✓CA y-coordinate	(3)
	OR		OR	(0)
	C(4;-7)		✓A coordinates of C	
	: Midpoint of AC			
	$=M\left(\frac{0+4}{2};\frac{4-7}{2}\right)$			
	$= M\left(2; \frac{-3}{2}\right)$		✓CA x coordinate	
	$\left(\frac{1}{2},\frac{1}{2}\right)$		✓CA y-coordinate	(3)
3.4	C(4;-7)		✓CA x coordinate	
			✓CA y-coordinate	(2)
3.5	m _{AB} =1		_	
	tan AFG =1		✓CA tan AFG =1	
	AFG = 45°		✓CA AFG = 45°	
	$m_{AD} = \frac{-1-4}{10-0}$			
	$=-\frac{1}{2}$		\checkmark A $m_{AD} = -\frac{1}{2}$	
	$\tan A\hat{H}J = -\frac{1}{2}$		_	
	AĤJ = 153, 43°		✓CA AĤJ = 153,43°	
	BÂD = 153, 43° − 45° [exterior \angle = 108, 43°	of ∆HAF]	✓CA BÂD=108,43°	
	∴ $\hat{BCD} = 108,43^{\circ}$ [opp \angle s of	a parm.]	✓CA BĈD=108,43°	
			500	(6)

OR	OR
$CD = \sqrt{(10-4)^2 + (-1+7)^2} = 6\sqrt{2}$	✓CA length of CD
BC = $\sqrt{(-6-4)^2 + (-2+7)^2} = 5\sqrt{5}$	✓CA length of BC
BD = $\sqrt{(-6-10)^2 + (-2+1)^2} = \sqrt{257}$	✓A length of BD
$BD^2 = BC^2 + CD^2 - 2.BC.CD.cosB\hat{C}D$	✓A use of cosine rule
$(\sqrt{257})^{2} = (5\sqrt{5})^{2} + (6\sqrt{2})^{2} - 2.(5\sqrt{5}).(6\sqrt{2}).\cos B\hat{C}D$ $\therefore \cos B\hat{C}D = \frac{(5\sqrt{5})^{2} + (6\sqrt{2})^{2} - (\sqrt{257})^{2}}{2.(5\sqrt{5}).(6\sqrt{2})}$	✓CA substitution into cosine rule
BĈD = 108, 43°	✓CA answer
	(6) [16]

4.1.1	$r^2 = OJ^2 = 2^2 + (-1)^2$	✓A substitution	
	$r = \sqrt{5}$	✓A length of OJ	
440	au	1992 NO. 181 2 122372	(2)
4.1.2	$OK = OJ + JK = \sqrt{5} + 2\sqrt{5} = 3\sqrt{5}$	✓A length of OK	
	$(3\sqrt{5})^2 = (a-0)^2 + (-3-0)^2$	✓A substitution	
	$45 = a^{2} + 9$ $a^{2} = 36$ a = -6 or $a = 6$	✓A a² subject of formula	
	N/A OR		(3)
	$OJ = \sqrt{5}$	OR	
	\therefore JK = $2\sqrt{5}$	✓A length of JK	
	$(2\sqrt{5})^2 = (a-2)^2 + (-3+1)^2$	✓A substitution	
	$20 = a^2 - 4a + 4 + 4$		
	$a^2 - 4a - 12 = 0$	✓A standard form	
	(a-6)(a+2)=0		
	a=6 or $a=-2$		
	N/A		(3)
4.1.3	$(x-6)^2 + (y+3)^2 = 20$	$\checkmark A (x-6)^2 + (y+3)^2$	
		√CA = 20	
	ANOM.		(2)

4.1.4	Substitute (10;-4):	
7.1.7	$(10-6)^2 + (-4+3)^2$	✓CA substitution
	(10-6) + (-4+3) = 17	· CA substitution
	$\begin{vmatrix} =17 \\ 17 < 20 \end{vmatrix}$	✓CA 17 < 20
	: the point lies inside the circle	✓CA conclusion (3)
4.1.5	$KO = \sqrt{5} + 2\sqrt{5} = 3\sqrt{5}$	✓ CA length of KO
	In ΔPOR and ΔPKS:	_
	1. $\hat{P} = \hat{P}$ [common]	
	2. $PRO = PSK$ [= 90°; tangent \perp radius]	
	3. $P\hat{O}R = P\hat{K}S$ [remaining $\angle s$]	
	ΔPOR ΔPKS [∠∠∠]	
	$\frac{PO}{PK} = \frac{OR}{KS} \qquad [\parallel \Delta s]$	
	100	
	$=\frac{OR}{2OR}=\frac{1}{2}$	
	2011	~
	$\therefore PO = \frac{1}{2}PK$	\checkmark A PO = $\frac{1}{2}$ PK
	$PO = OK = 3\sqrt{5}$	2
	$PK = 2(3\sqrt{5}) = 6\sqrt{5}$	✓ CA length of PK
		or tronger or the
	$P\hat{S}K = 90^{\circ}$ [radius \perp tangent]	
	$PS^{2} = PK^{2} - KS^{2}$ [Theorem of Pythagoras]	✓ CA substitution in Theorem
	$=\left(6\sqrt{5}\right)^2-\left(2\sqrt{5}\right)^2$	of Pythagoras
	=160	
	$\therefore PS = \sqrt{160} = 4\sqrt{10}$	✓CA answer (5)
4.2.1	$x^2 - 4x + 4 + y^2 + 5y + \frac{25}{4} = -d + 4 + \frac{25}{4}$	✓A completing the square
	$(x-2)^2 + (y+\frac{5}{2})^2 = -d + \frac{41}{4}$	$(5)^2$
	$(x-2) + (y+\frac{\pi}{2}) = -d + \frac{\pi}{4}$	$\checkmark A (x-2)^2 + \left(y + \frac{5}{2}\right)^2$
	Centre $\left(2; -\frac{5}{2}\right)$ Answer only: Full marks	✓CA x coordinate
	Centre $\left(2; -\frac{1}{2}\right)$ Full marks	✓ CA x coordinate
		(4)
4.2.2	diameter = 24 units, ∴ radius =12 units	✓A radius =12 units
7.2.2	Section 2 - Control of the Control o	
	$-d + \frac{41}{4} = 144$	✓CA equating
	$d = -\frac{535}{4}$	✓CA answer
	4	(3)
		[22]

5.2.1	LHS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	$1-(1-2\sin^2x)$	✓A 1–2sin² x	
	$=\frac{1}{2\sin x \cos x}$	✓A 2sin x cos x	
	2sin² x		
	$={2\sin x \cos x}$		
	sin x		
	$={\cos x}$	✓A simplification	
	= tan x		
	= RHS		(3)
	OR	OR	
	LHS		
	1/stot 4/stost 4/st deck/ 1/st)		
	71111111111111111111111111111111111111	✓A 2cos² x-1	
	//////2\$if0%\$668\$/////	✓A 2sin x cos x	
	/ SN) X - COS X X X / / / / / / / / / / / / / / / /		
	///28\n\x\co\\\////////////////////////////////		
	/\$in/1/-cos/1/4-\$in/1/4-cos/1/		
	//////2\$in/%¢os/%////		
	<u> </u>		
	//2sip/xp6s/x////////		
	<u> </u>		
	//sosx/////////////////////////////////	✓A simplification	
	\frac{1}{2}\text{dist}(\text{X}\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A simplification	
	/RH8//////////		
			(3)
	OR LHS	OD.	
	$\sin^2 x + \cos^2 x - \left(\cos^2 x - \sin^2 x\right)$	OR	
	=	\checkmark A cos ² x – sin ² x	
	2 sin x cos x	✓A 2sin x cos x	
	$=\frac{2\sin^2 x}{\cos^2 x}$	V A ZSIII XCOS X	
	2 sin x cos x		
	$=\frac{\sin x}{x}$		
	COS X	✓A simplification	
	= tan x	20	
	= RHS		(2)
577			(3)

id.		
5.2.2	tan15°	
	$=\frac{1-\cos 2(15^\circ)}{\sin 2(15^\circ)}$	1-cos 2(15°)
	sin 2(15°)	$\checkmark A \frac{1-\cos 2(15^\circ)}{\sin 2(15^\circ)}$
	$=\frac{1-\cos 30^{\circ}}{\sin 30^{\circ}}$	
	$1-\frac{\sqrt{3}}{2}$	
	$=\frac{2}{1}$	✓ A substitution of special
	$=\frac{1-\frac{\sqrt{3}}{2}}{\frac{1}{2}}$	angle values
	$= \left(1 - \frac{\sqrt{3}}{2}\right) \times \frac{2}{1}$	
	$=2-\sqrt{3}$ $\sin x$	✓CA answer (3)
5.3	$\sin(360^{\circ} + x).\cos(90^{\circ} + x) - \frac{\sin x}{\cos(-x).\tan(360^{\circ} - x)}$	
	1 2 3	✓A sin x ✓A –sin x
	$= \sin x.(-\sin x) - \frac{\sin x}{\cos x.(-\tan x)}$	$\checkmark A \cos x \qquad \checkmark A - \tan x$
	$=-\sin^2 \mathbf{X} + 1$	√CA 1
	$=\cos^2 x$	✓CA answer (6)
-		CA disswei (0)
5.4	$\cos 2x - \frac{1}{3} = \frac{1}{3} \sin x$ $1 - 2\sin^2 x - \frac{1}{3} = \frac{1}{3} \sin x$	
	$1-2\sin^2 x - \frac{1}{2} = \frac{1}{2}\sin x$	✓A 1-2sin² x
		7,1 23m A
	$3-6\sin^2 x-1=\sin x$ $6\sin^2 x+\sin x-2=0$	✓ A standard form
	$(3\sin x + 3\sin x - 2 - 0)$ $(3\sin x + 2)(2\sin x - 1) = 0$	✓ CA factors
		2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	$\sin x = -\frac{2}{3}$	✓CA $x = 221,81^{\circ} + k.360^{\circ}$
	$\therefore x = 221,81^{\circ} + k.360^{\circ} \text{ or } x = 318,19^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$	or $x = 318,19^{\circ} + k.360^{\circ}$
	or $\sin x = \frac{1}{2}$	The state of the s
	$\therefore x = 30^{\circ} + k.360^{\circ}$ or $x = 150^{\circ} + k.360^{\circ}$, $k \in \mathbb{Z}$	✓CA $x = 30^{\circ} + k.360^{\circ}$ or
	was now gradier recognisescents have been been been been been been been be	$x = 150^{\circ} + k.360^{\circ}$ $\checkmark A \ k \in Z$ (6)
5.5	$\sin(2x+30^{\circ})+k=3$	(0)
0.0	$\sin(2x+30^{\circ})=3-k$	✓ A $\sin(2x+30^{\circ})=3-k$
	$\sin(2x+30^{\circ})<-1 \text{ or } \sin(2x+30^{\circ})>1$	✓A $\sin(2x+30^{\circ})<-1$ or
	3-k < -1 or $3-k > 1$	$\sin(2x+30^\circ)>1$
	J-K -1 01 J-K >1	\checkmark CA 3-k<−1 or 3-k>1
	k > 4 or $k < 2$	√CA k>4
		√CA k < 2 (5)
	MWM OA TITLE	[33]

6.1	$b=\frac{1}{2}$	✓A answer
	2	(1)
6.2	period = 360°	✓A answer
	20	(1)
6.3	A(30°;1)	✓A 30° ✓A 1
		(2)
6.4	$x = 160^{\circ}$	✓A answer
		(1)
6.5	$-3 \le y \le 1$	√√ AA
	OR	(2)
		OR
	$y \in [-3;1]$	√√ AA
-		(2) [7]

7.1	sin y	✓A substitution in sine rule 2b sin x
	$\sin y \neq \frac{1}{2} \cos x$ or $\sin y = 2b \sin x$	\checkmark A sin y = $\frac{2b \sin x}{b}$ OR
	siny = 2, sin x/,	$b\sin y = 2b\sin x$
		(2)
7.2	$\frac{AB}{BC} = \tan \theta$	\checkmark A $\frac{AB}{BC} = \tan \theta$
	\therefore AB = BC.tan θ	\checkmark A AB = BC.tan θ
	$\hat{D} = 180^{\circ} - (x + y)$	✓A $\hat{D} = 180^{\circ} - (x + y)$
	$BC^2 = BD^2 + CD^2 - 2BD.CD\cos\hat{D}$	
	$BC^2 = (2b)^2 + b^2 + 2(2b)(b)\cos[180^\circ - (x + y)]$	✓A substitution in cosine rule
	$BC^2 = (2b)^2 + b^2 + 2(2b)(b)\cos(x+y)$	$\checkmark A + cos(x + y)$
	$BC^2 = 5b^2 + 4b^2 \cos(x + y)$	
	$BC^2 = b^2 (5 + 4\cos(x + y))$	✓ A simplification
	$BC = b\sqrt{(5+4\cos(x+y))}$	✓A taking square root on LHS and RHS
	$\therefore AB = b \tan \theta \sqrt{(5 + 4\cos(x + y))}$	(7)
7.3	AB = 54,8 tan 42,6° $\sqrt{5+4\cos(31^\circ+75,84^\circ)}$	✓ A substitution
	AB = 98,76 metres	√A answer
		(2)
		[11]

8.1.1	$\hat{A}_1 = \frac{1}{2} (\hat{COE})$	$[\angle$ at centre = $2 \times \angle$ at circumference]	√R	
	= 68°		✓A answer	
				(2)
8.1.2	$\hat{E}_1 = \hat{A}_1$	[tan chord theorem]	√R	
	= 68°		✓CA answer	5.5
		AND STREET BY AN	/D	(2)
8.1.3	$B\hat{C}E = \hat{E}_1$	[alt ∠s; DF CA]	√R	
	= 68°		✓CA answer	(2)
8.1.4	Ĝ =180° – BĈE	[opp. ∠s of cyclic quad]	√R	(2)
0.1.4	=112°	[opp. 2 s of cyclic quad]	✓CA answer	
	-112		or tanower	(2)
8.2	BÊD = 90°	[radius⊥ tangent]	√S√R	
	$= \hat{B}_{\scriptscriptstyle 1}$	[co-interior ∠s; DF CA]	✓ S/R	
	1 10	files from control As aband?	✓ R	
	$\therefore AB = \frac{1}{2}AC$	[line from centre \perp to chord]	* K	
	= 7 units		✓A answer	(5)
	payment.			(-)
	OR		OR	
	BÊD = 90°	[radius \perp tangent]	√S√R	
	$\therefore \hat{E}_2 = 22^\circ$	[ruoruo _ tangon.]	- 5. K	
) Form of the of A DCE1		
	· ·	[sum of \angle s of \triangle BCE]		
	$=180^{\circ} - (68^{\circ} + 22^{\circ})$	P)		
	= 90°		✓ S/R	
	$\therefore AB = \frac{1}{2}AC$	[line from centre \perp to chord]	√R	
	= 7 units		✓A answer	(5)
				[13]

9.	In ∆QVS:		
9.			
	$\frac{QU}{} = \frac{QT}{}$	Favor the areas LITIN/CLOD fline II are aids of Al	
	UV TS	[prop. theorem; UT VS] OR [line one side of Δ]	√S√R
	Parameters Parameters		
	_ 5		
	$=\frac{5}{2}$		
	5k		
	$=\frac{5k}{2k}$		
	2k		
	. Fl. 0	5, 4, 2, 15,	Z = 1 = 1
	\therefore 5K = ZX;	or: $x = \frac{5}{2}k$. And: $3x = \frac{15}{2}k$	✓ x i.t.o. k
		2 2	
	In ∆UPR:		
	PS UV	Invan theorem, LIDIIVEL OD Fline II and side of A.1	
	$\overline{PR} = \overline{UR}$	[prop. theorem; UP VS] OR [line one side of Δ]	√S
	= 2k		
	$=\frac{15}{2}$ k		
	K		
	7.75		
	_ 4		√S
	$=\frac{4}{15}$. J
	PS /		
	$\therefore \frac{13}{13} = \frac{4}{13}$.51
	SR 11		√answer
			(6)
			[6]
			[0]

10.1	P 1 B Construct AD = DE and AO = DE	Q E	F	
	Construct AP = DE and AQ = DF In \triangle APQ and \triangle DEF: 1. AP = DE 2. AQ = DF 3. $\hat{A} = \hat{D}$ $\therefore \triangle$ APQ $\equiv \triangle$ DEF $\therefore \hat{P}_1 = \hat{E}$ But: $\hat{B} = \hat{E}$ $\therefore \hat{P}_1 = \hat{B}$	[from construction] [from construction] [given] [SAS] [from ≡ Δs] [given]	✓ construction $ \checkmark \triangle APQ = \triangle DEF $ $ \checkmark \hat{P}_1 = \hat{E} $	
	$\therefore PQ \parallel BC$ $\therefore \frac{AP}{AB} = \frac{AQ}{AC}$ $\therefore \frac{DE}{AB} = \frac{DF}{AC}$	[corresponding \angle s are =] [prop. theorem; PQ BC] [DE = AP; DF = AQ]	✓S√R ✓S/R	(6)
10.2.1	In \triangle MKL and \triangle MNP: 1. $\frac{MK}{MN} = \frac{40}{16} = 2,5$ 2. $\frac{KL}{NP} = \frac{25}{10} = 2,5$ 3. $\frac{ML}{MP} = \frac{30}{12} = 2,5$		✓S ✓S ✓S	V = Z
	∴ ∆MKL ∆MNP	[sides of Δs in proportion]	√ R	(4)

			-
10.2.2	$N\hat{P}M = \hat{L}$	[from \(\Delta s \)]	✓S✓R
	∴ KLNP is a cyclic quadrilateral	[converse: ext. ∠ of cyclic quadrilateral] OR	√R
		[ext. \angle of quad = int. opp. \angle]	(3)
	OR		OD
	3000000		OR
	$P\hat{N}M = \hat{K}$	[from ∆s]	✓S✓R
	:. KLNP is a cyclic quadrilateral	[converse: ext. \angle of cyclic quadrilateral] OR [ext. \angle of quad = int. opp. \angle]	✓R (3)
10.3.1	In ΔBCE and ΔADE:		✓ selecting triangles
	1. $\hat{E}_1 = \hat{E}_3$	[vertically opp. \angle s]	√S
	2. $\hat{C}_1 = \hat{D}_2$	$[\angle s \text{ in the same segment}]$	√S/R
	3. $\hat{B} = \hat{A}$	[sum of \angle s of Δ s]	✓ B=Â
	∴ ∆BCE ∆ADE	$[\angle \angle \angle]$	OR
	$\therefore \frac{BC}{CE} = \frac{AD}{DE}$	[from \(\Delta s \)]	[∠∠∠]
	1000-10 1000-101 1-000-1		√R
	$\therefore BC = \frac{AD.CE}{DE}$		√S/R
			(5)
10.3.2	In ΔADE and ΔBDC:	Fishers	✓ selecting triangles
	1. $\hat{D}_2 = \hat{D}_1$	[given]	
	2. $\hat{A} = \hat{B}$	[∠s in the same segment]	√S/R
	3. $\hat{E}_3 = B\hat{C}D$	[sum of \angle s of Δ s]	√R
	∴ ∆ADE ∆BDC	[∠∠∠]	W-960
	$\therefore \frac{AD}{BD} = \frac{DE}{CD}$	[from ∆s]	✓S
	∴ AD.CD = DE.BD		
	= DE.(DE + BE)		✓ substitute DE + BE
	$= DE^2 + DE.BE$		(5)
			[23]

TOTAL: 150

