

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

JUNE 2024

TECHNICAL MATHEMATICS P2

MARKS: 150

TIME: 3 hours

This question paper has 15 pages, a 2-page information sheet, and an answer book of 25 pages.

PAPERS

2 TECHNICAL MATHEMATICS P2 (DEAF LEARNERS)

(EC/JUNE 2024)

INSTRUCTIONS AND INFORMATION

Read the instructions. Answer the questions.

- 1. This question paper has 11 (ELEVEN) questions.
- 2. Answer ALL the questions. Write in the SPECIAL ANSWER BOOK.
- 3. Show ALL calculations, diagrams, graphs, etc. that you used in your calculations.
- 4. Answers only will NOT always get full marks.
- You may use a prescribed calculator.Some questions will tell you NOT to use a calculator.
- 6. **Round off** answers to **TWO decimal places**. **Some questions** will **tell** you **how** to **round off**.
- 7. **Diagrams** are **NOT** always drawn to **scale**.
- 8. An **information sheet** with formulae is at the **end** of the **question paper**.
- 9. Write **neatly**. Your **answers** must be **easy** to **read**.

3

QUESTION 1

Diagram:

AOB is a **triangle** with **vertices** A(15; 18); O(0; 0) and B(23; 5). β is the **angle of inclination** of **line OB**. α is the **angle of inclination** of **line OA**.

- 1.1 **Determine** the **gradients** of **OA** and **OB**. (4)
- 1.2 **Determine** the **angle of inclination** of **line OB**. (3)
- 1.3 Find the size of $A\hat{O}B$, correct to the nearest whole number. (4)
- 1.4 AOBM is a parallelogram.

 Find the coordinates of M. (5)

 [16]

2.1 **Diagram:**

It shows the **circle with equation** $x^2 + y^2 = 13$.

The contact point of a tangent to the circle is at A(-2; -3).

- 2.1.1 Write down the radius of the circle in simplified surd form. (1)
- 2.1.2 **Determine** the **equation** of the **tangent** to the **circle at point** A in the **form** y = ... (4)
- 2.1.3 Write the coordinates of another point where the line AO intersects with the circle. (2)
- 2.2 Draw the graph of $\frac{x^2}{3} + \frac{y^2}{9} = 1$.

 Show ALL the intercepts. (3)

3.1 **Diagram**:

A(a; $\sqrt{3}$) and OA = 3.

Do **NOT** use a calculator.

Determine the value of:

$$3.1.1 a$$
 (3)

$$3.1.2 \quad \sec \theta$$
 (1)

3.1.3
$$cosec(\theta + 360^{\circ})$$
 (3)

3.2 **Determine** the **values** of
$$x$$
, if $tan(x - 30^\circ) = -0.982$ and $0^\circ \le x - 30^\circ \le 360^\circ$. (4) [11]

TECHNICAL MATHEMATICS P2 (DEAF LEARNERS)

(EC/JUNE 2024

QUESTION 4

4.1 Simplify:
$$\frac{\sin(180^{\circ} - \theta)\tan(180^{\circ} + \theta)\sin(270^{\circ})}{\cos(360^{\circ} - \theta)\tan(180^{\circ} - \theta)}$$
(6)

4.2 **Prove that**:
$$(\cos c B - \cot B)^2 = \frac{1 + \cos B}{1 - \cos B}$$
 (6)

QUESTION 5

Given the functions defined by $f(x) = \cos(x - 30)$ and $g(x) = 2\sin x$ for $x \in (0^{\circ};360^{\circ})$.

- 5.1 Write down the period of f. (1)
- 5.2 Write down the amplitude of g. (1)
- On the same axes given in your SPECIAL ANSWER BOOK draw the graphs of f and g.
 Show the turning points, endpoints, and the intercepts with the axes. (8)
- 5.4 Use graphs to determine for which values of x is:

$$5.4.1 \quad g(x) \ge 0 \tag{2}$$

5.4.2
$$f(x)$$
. $g(x) < 0$ in the **second quadrant** (2) [14]

6.1 Write the sine rule for $\triangle ABD$. (1)

6.2 **Diagram:**

A ship at sea, observes that the angles of elevation to the top and bottom of a lighthouse on a cliff are 7° and 9° respectively.

It is known that the height of the lighthouse is 48 m.

Determine:

6.2.1	The size of $B\hat{A}C$. Give a reason	(2)
6.2.2	The size of $A\widehat{B}D$. Give a reason	(2)
6.2.3	The length of AC	(4)
6.2.4	The distance between the ship and the bottom of the cliff	(2)
6.2.5	The height of the cliff	(3) [14]

(EC/JUNE 2024)

QUESTION 7

Diagram:

O is the centre of the circle.
OS || PQ and PS meet OQ at T.

- 7.1 If $P_1 = x$, express T_1 in terms of x.

 Give reasons. (6)
- 7.2 If $x = 30^{\circ}$, calculate the sizes of the angles in ΔQST .

 Give reasons where necessary. (5)
- 7.3 Show that $\triangle PQS \equiv \triangle SOP$. (3) [14]

9

QUESTION 8

Diagram:

PQRS is a cyclic quadrilateral with PS = PQ. SR is produced to meet V such that PR \parallel QV. TP and TS are tangents to the circle. $Q_1 = x$.

- 8.1 Name, with reasons, four other angles equal to x. (8)
- 8.2 Give a reason for $P_4 = S_3$. (1)
- 8.3 **Prove, with reasons**, that $\hat{T} = Q\hat{P}S$. (5) [14]

(EC/JUNE 2024)

QUESTION 9

Diagram:

B is the midpoint of side QR. C and D are points on PR such that PC = CD = DR. PR = 15 cm.

- 9.1 Show that BD \parallel QC. (3)
- 9.2 **Prove** that PA = AB. (3)
- 9.3 **Determine** the **length** of \mathbf{QR} , if PD : DR = 2 : 1. (6) [12]

(EC/JUNE 2024)

TECHNICAL MATHEMATICS P2 (DEAF LEARNERS)

QUESTION 10

A fan in a jet engine has a diameter of 340 cm and a circumferential velocity of 568 metres per second.

•		
10.1	Convert 568 m/s to km/h.	(2)
10.2	Determine the rotational frequency of the wheel in hours.	(5)
10.3	Determine the angular velocity(speed) of the wheel in seconds.	(3)
10.4	Determine the distance, in km, a point on the fan will cover in 15 seconds.	(3)
10.5	Determine how long it will take the fan to make half a revolution.	(2) [15]

11

11.1 Diagram:

A pendulum in a clock, FIGURE A, follows the path as depicted_(shown) in the diagram, FIGURE B.

There is a radius of 30 cm and the angle formed is 60°.

- 11.1.1 **Determine** the **length** of arc **CD**, that the **pendulum follows**. (3)
- 11.1.2 **Determine** the area of sector ECD. (3)
- 11.1.3 Calculate the length of the pendulum. (3)
- 11.2 An analogue clock has a diameter of 30 cm, and a chord length of 20 cm.

Determine the length of the hour hand.

SA EXAM

<u>13</u>

11.3 **Diagram:**

The **ordinates** in the **irregular figure** are: 7 cm, 6,5 cm, x, 5 cm; 7,5 cm, 6 cm, 4 cm and 3 cm respectively as **indicated**_(shown). The **width** of the **irregular figure** is 11,55 cm and the **area** is 63,525 cm².

Determine the **length** of the **unknown ordinate** x.

(4)

[18]

TOTAL: 150

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = -\frac{b}{2a}$$

$$y = \frac{4ac - b^2}{4a}$$

$$a^x = b \Leftrightarrow x = \log_a b$$
, $a > 0$, $a \ne 1$ and $b > 0$

$$A = P(1+ni)$$

$$A = P(1-ni)$$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$ $A = P(1-i)^n$

$$A = P(1-i)^n$$

$$i_{eff} = \left(1 + \frac{i}{m}\right)^m - 1$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \qquad , \quad n \neq -1$$

$$\int kx^n dx = k \cdot \frac{x^{n+1}}{n+1} + C \qquad , \quad n \neq -1$$

$$\int \frac{1}{x} dx = \ln(x) + C, \quad x > 0$$

$$\int \frac{k}{x} dx = k \cdot \ln(x) + C, \quad x > 0$$

$$\int a^x dx = \frac{a^x}{\ln a} + C \quad , \quad a > 0$$

$$\int ka^{nx}dx = k \cdot \frac{a^{nx}}{n \ln a} + C \quad , \quad a > 0$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y = mx + c y - y_1 = m(x - x_1)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan \theta$$

$$m = \tan \theta$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

In ΔABC:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$
Area = $\frac{1}{2}ab \cdot \sin C$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area =
$$\frac{1}{2}ab \cdot \sin C$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

TECHNICAL MATHEMATICS P2 (DEAF LEARNERS)

 $\pi rad = 180^{\circ}$

 $\pi r a a = 180^{\circ}$

Angular velocity = $\omega = 2\pi n$ where n = rotation frequency

Angular velocity = $\omega = 360^{\circ}n$ where n =rotation frequency

Circumferential velocity = $v = \pi Dn$ where D = diameter and n = rotation frequency

Circumferential velocity = $v = \omega r$ where ω = Angular velocity and r = radius

Arc length $s = r\theta$ where r = radius and $\theta =$ central angle in radians

Area of a sector = $\frac{rs}{2}$ where r = radius and s = arc length

Area of a sector = $\frac{r^2\theta}{2}$ where r = radius and θ = central angle in radians

 $4h^2 - 4dh + x^2 = 0$ where h = height of segment, d = diameter of the circle and x = length of chord

 $A_T = a(m_1 + m_2 + m_3 + ... + m_{n-1})$ where a = width of equal parts, $m_1 = \frac{o_1 + o_2}{2}$ and n = number of ordinates

OR

 $A_{T} = a \left(\frac{o_{1} + o_{n}}{2} + o_{2} + o_{3} + o_{4} + \dots + o_{n-1} \right)$ where a = width of equal parts, $o_{i} = i^{th}$ ordinate and n = number of ordinates

