

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

COMMON TEST

JUNE 2024

MARKS: 150

TIME: 3 hours

This question paper consists of 11 pages, an information sheet and an answer book of 16 pages.

SA EXAM PAPERS

Copyright Reserved

Please Turn Over

Mathematics/P2 2 2024 Common Test NSC

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 8 questions.
- 2. Answer **ALL** the questions in the **ANSWER BOOK** provided.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. An information sheet with formulae is included at the end of the question paper.
- 9. Write neatly and legibly.

3 NSC 2024 Common Test

QUESTION 1

In the diagram, DEFG is a parallelogram with vertices D(x;7), E(-5;0), F(1;-8) and G. $GH \perp EF$, with H on EF, such that EH = HF. The angle of inclination of DG is β .

DE has a positive gradient. DG cuts the y-axis at $J\left(0; \frac{5}{3}\right)$ and the x-axis at K.

The length of DE = $5\sqrt{2}$.

- 1.1 Calculate the gradient of EF. (2)
- 1.2 Calculate the coordinates of H. (2)
- Determine the equation of GH in the form y = mx + c. (3)
- 1.4 Calculate the size of β . (3)
- 1.5 Calculate the size of OĴK. (2)
- 1.6 Calculate the value of x. (5)
- 1.7 Calculate the area of DEOJ. (6)

[23]

Mathematics/P2 4 NSC

QUESTION 2

In the diagram below, P(3;-2) is the centre of a circle that has the y-axis as tangent.

A and B are the x-intercepts of circle P.

- 2.1 Determine
 - 2.1.1 the radius of the circle (1)
 - 2.1.2 the equation of the circle (1)
- 2.2 Calculate the distance AB. (4)
- 2.3 Another circle has the equation $x^2 + 2x + y^2 8y 8 = 0$. Determine the radius and the coordinates of the centre of this circle. (4)
- 2.4 Will the two circles intersect? Clearly motivate your answer by means of calculations. (5)
- 2.5 The circle with centre P is reflected about the line y = -1. Write down the equations of the horizontal tangents to the new circle formed through this reflection. (2)

[17]

2024 Common Test

5 NSC 2024 Common Test

QUESTION 3

DO NOT USE A CALCULATOR WHEN ANSWERING QUESTION 3.

In the diagram below, P is a point in the first quadrant such that $5\cos\theta = 3$. R(k; 6) is a point in the second quadrant such that $P\hat{O}R = 90^{\circ}$.

Determine the value of the following:

3.1.1
$$\tan \theta$$
 (3)

$$3.1.2 \qquad \sin 2\theta \tag{3}$$

$$3.1.3 k (5)$$

3.2 Simplify fully:
$$\cos(385^{\circ} + \beta) \cdot \sin(35^{\circ} - \beta) + \sin(25^{\circ} + \beta) \cdot \sin(55^{\circ} + \beta)$$
 (4)

- 3.3 Given: $\sin 3\theta = 4\sin \theta \cdot \cos^2 \theta \sin \theta$.
 - 3.3.1 Prove the given identity. (5)
 - 3.3.2 Hence, or otherwise, prove the following identity: $\frac{\sin 3\theta + \sin \theta}{2 + 2\cos 2\theta} = \sin \theta$ (3)
 - 3.3.3 Determine all the values of θ for which the identity in QUESTION 3.3.2 will be undefined. (4)
- 3.4 Determine the minimum value of: $\cos 3x 5$. (2)

[29]

Mathematics/P2 6 2024 Common Test NSC

QUESTION 4

In the diagram below, RT represents the height of a vertical tower, with T the foot of the tower. A and B represent two points equidistant from T, and which lie in the same horizontal plane as T.

The height of the tower is h. The angle of depression of B from R is α . $R\hat{B}A = \beta$.

4.1 Determine the size of \hat{ARB} in terms of β . (1)

4.2 Prove that
$$AB = \frac{2h \cdot \cos \beta}{\sin \alpha}$$
 (6)

4.3 Calculate the height of the tower , rounded off to the nearest unit, if AB = 5,4 units, $\alpha = 51^{\circ}$ and $\beta = 65^{\circ}$.

[10]

2024 Common Test

QUESTION 5

In the diagram, the graph of $g(x) = a \sin x$ is drawn for the interval $x \in [-180^{\circ}; 180^{\circ}]$. A $(-90^{\circ}; -2)$ are the coordinates of a turning point of the graph.

5.1 Write down the value of a.

(1)

- On the grid provided in the ANSWER BOOK, draw the graph of $f(x) = 2\cos(x 30^\circ)$ for $x \in [-180^\circ; 180^\circ]$. Clearly indicate all intercepts with the axes, as well as the turning points and end points of the graph. (4)
- 5.3 Write down:

5.3.1 the range of
$$f$$
 (2)

5.3.2 the period of g(3x) (2)

- Determine algebraically the values of x if f(x) = g(x), for $x \in [-180^{\circ}; 180^{\circ}]$. (5)
- 5.5 Determine the value(s) of x, in the interval $x \in [-180^{\circ}; 180^{\circ}]$, for which

5.5.1
$$g'(x) = 0$$
? (2)

5.5.2
$$f(x) > g(x)$$
? (2)

[18]

Mathematics/P2 8 2024 Common Test NSC

GIVE REASONS FOR YOUR STATEMENTS IN QUESTIONS 6, 7 AND 8.

QUESTION 6

SR is a diameter of the circle in the sketch below. Chord ST is produced to P. PR is a tangent to the circle at R. Chord SV produced meets PR at Q. TV and TR are drawn.

- 6.1.1 Write down the size of PRS. Provide a reason. (2)
- 6.1.2 Calculate the size of:

$$(a) \qquad \hat{P} \tag{3}$$

$$(b) \qquad \hat{V}_1 \tag{3}$$

6.1.3 Prove that
$$P\hat{Q}S = V\hat{T}S$$
. (4)

Mathematics/P2 9 2024 Common Test NSC

6.2 In the diagram below, the bigger circle has points E, O, C and D on its circumference. O is the centre of the smaller circle. C is a point of intersection between the two circles, and A and F are two more points on the circumference of the smaller circle. ABCD and BOFE are straight lines.

 $\hat{A} = 66^{\circ}$ and $\hat{E} = 42^{\circ}$.

Prove that AB = BC. (6)

[18]

Mathematics/P2 10 March 2024 Common Test NSC

QUESTION 7

7.1 In the diagram, chords ST, SR and TR are drawn in the circle with centre O. VSU is a tangent to the circle at S.

Use the diagram to prove the theorem which states that $V\hat{S}T = \hat{R}$. (5)

7.2 LG is a tangent to circle EFGHP at G. Chord PH is produced to L. Chord HF cuts chord GP in M and chord EG in K. EG \parallel PL and EF = PH. $\hat{G}_4 = x$.

- 7.2.1 Write down, with reasons, THREE other angles, each equal to x. (6)
- 7.2.2 Prove that $\triangle HMG \parallel \triangle EFG$. (5)
- 7.2.3 Hence, or otherwise, prove that PH.HG = EG.HM. (3)

SA EXAM [19]

Mathematics/P2 11 2024 Common Test NSC

QUESTION 8

In the diagram below, $\triangle ABC$ is drawn with D on BC, and F and E on AC such that $AB\parallel ED$, $EB\parallel FD$, $AB\perp BC$ and $BE\perp AC$. AC=6.5 units and BC=6 units.

- 8.1 Determine the length of AB. (2)
- 8.2 Prove that $CB = \sqrt{CA.CE}$. (6)
- 8.3 Hence, determine the length of CE, correct to one decimal place. (2)
- 8.4 Write down the length of AE. (1)
- 8.5 Determine the length of EF. (5)

[16]

TOTAL: 150

2024 Common Test

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni) \qquad A = P(1 - ni) \qquad A = P(1 - i)^n \qquad A = P(1 + i)^n$$

$$T_n = a + (n - 1)d \qquad S_n = \frac{n}{2}[2a + (n - 1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} ; r \neq 1 \qquad S_\infty = \frac{a}{1 - r}; -1 < r < 1$$

$$F = \frac{x[(1 + i)^n - 1]}{i} \qquad P = \frac{x[1 - (1 + i)^{-n}]}{i}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$In\Delta ABC: \qquad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$area \Delta ABC = \frac{1}{2}ab \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos(\alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos(\alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos(\alpha \cdot \cos \alpha + \cos(\alpha \cdot$$

 $b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$

 $\hat{y} = a + bx$