

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

FINAL

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

COMMON TEST

JUNE 2024

MARKING GUIDELINES

MARKS: 150

TIME: 3 hours

These marking guidelines consist of 17 pages.

Copyright Reserved

June Common Test 2024

NOTE:

- If a candidate answered a QUESTION TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answer in order to solve a problem is unacceptable.

GEOMETRY		
S	A mark for a correct statement (A statement mark is independent of a reason.)	
R	A mark for a correct reason (A reason mark may only be awarded if the statement is correct.)	
S/R	Award a mark if the statement AND reason are both correct.	

1.1	$m_{\rm EF} = \frac{-8 - 0}{1 - (-5)}$		A✓ substitution
	$=-\frac{4}{3}$	Answer only: Full marks	CA✓ answer (2)
1.2	$\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$		
	$=\left(\frac{-5+1}{2},\frac{0+(-8)}{2}\right)$		
	= (-2; -4)	Answer only: Full marks	$\begin{array}{c} A \checkmark x\text{-coordinate} \\ A \checkmark y\text{-coordinate} \end{array} \tag{2}$
1.3	$m_{GH} \times \left(-\frac{4}{3}\right) = -1$		
	$m_{\rm GH} = \frac{3}{4}$		CA ✓ value of m_{GH}
	Substitute $(-2; -4)$ and $m_{GH} = \frac{3}{4}$ into	y = mx + c:	
		$-4 = \frac{3}{4}(-2) + c$	CA✓ substitution of point and gradient
	1 2	$c = -\frac{5}{2}$	
	maximum 1 mark	$y = \frac{3}{4}x - \frac{5}{2}$	CA✓ answer (3)
1.4	$m_{\rm DG} = m_{\rm EF} = -\frac{4}{3}$		CA ✓ value of $m_{\rm DG}$
	$m_{\rm DG} = \tan \beta = -\frac{4}{3}$		$CA \checkmark \tan \beta = -\frac{4}{3}$
	$\beta = 126,87^{\circ}$	M. O. Tira	CA✓ answer (3)

3 NSC – Marking Guidelines

1.5	$OJK = 126,87^{\circ} - 90^{\circ}$ [exterior \angle of $\triangle OJK$]	CA✓ method
	= $36,87^{\circ}$ If answer is a negative angle: $0/2$	CA✓ answer
	11 answer is a negative angle. 0/2	(2)
1.6	DE = $\sqrt{(x-(-5))^2+(7-0)^2}$ = $5\sqrt{2}$	A✓ substitution in distance
	·	formula and equating to $5\sqrt{2}$
	$(x-(-5))^2 + (7-0)^2 = 50$	CA✓ squaring both sides
	$x^2 + 10x + 24 = 0$	CA✓ standard form
	(x+6)(x+4) = 0 x = -6 or $x = -4$	CA ✓ both <i>x</i> -values
	x = -6 of x = -4 $x = -4 only$	CA \checkmark selecting the x-value > -5
	OR	OR (5)
	Equation of DG: $y = -\frac{4}{3}x + \frac{5}{3}$	CA✓ equation of DG
	Substitute $y = 7$: $7 = -\frac{4}{3}x + \frac{5}{3}$	CA \checkmark substitute $y = 7$
	$\frac{4}{3}x = -7 + \frac{5}{3}$	
	$\frac{4}{3}x = \frac{-16}{3}$	CA✓ simplification
	$\therefore x = \frac{-16}{3} \times \frac{3}{4}$	
	$ \begin{array}{ccc} 3 & 4 \\ = -4 \end{array} $	$CA \checkmark \checkmark \text{ answer } x = -4$ (5)

4 NSC – Marking Guidelines

1 5	
1.7 Equation of DG: $y = -\frac{4}{3}x + \frac{5}{3}$	CA ✓ equation of DG
For x-coordinate of K: $0 = -\frac{4}{3}x + \frac{5}{3}$	CA \checkmark substitution of $y = 0$
$x = \frac{5}{4} = 1,25$	$CA\checkmark$ value of x-coordinate of K
Area of $\triangle DEK = \frac{1}{2} \times base \times height$	
$= \frac{1}{2} \times \left(5 + \frac{5}{4}\right) \times 7$ 175	CA✓ substitution to calculate area of ∆DEK
$=\frac{175}{8}$	
Area of $\triangle OJK = \frac{1}{2} \times \frac{5}{4} \times \frac{5}{3}$ 25	CA ✓ substitution to calculate area of ΔOJK
$=\frac{25}{24}$	
Area of DEOJ = $\frac{175}{8} - \frac{25}{24} = \frac{125}{6} = 20,83 \text{ units}^2$	CA✓ area of DEOJ (6)
OR	OR
Equation of DG: $y = -\frac{4}{3}x + \frac{5}{3}$	CA✓ equation of DG
For x-coordinate of K: $0 = -\frac{4}{3}x + \frac{5}{3}$	CA \checkmark substitution of $y = 0$
$x = \frac{5}{4} = 1,25$	$CA\checkmark$ value of x-coordinate of K
DK = $\sqrt{[1,25-(-4)]^2+(0-7)^2}$ = $\sqrt{\frac{1225}{16}}$ = 8,75	
EK = $1,25-(-5)=6,25$	
Area of $\triangle DEK = \frac{1}{2} \times DK \times EK \times \sin J\hat{K}O$	
$= \frac{1}{2} \times 8,75 \times 6,25 \times \sin 53,13^{\circ}$ $= 21,87$	CA✓ substitution to calculate area of ΔDEK
Area of $\triangle OJK = \frac{1}{2} \times \frac{5}{4} \times \frac{5}{3}$ $= \frac{25}{24}$	CA✓ substitution to calculate area of ∆OJK
$-\frac{24}{24}$ Area of DEOJ = 21,87 - $\frac{25}{24}$ = 20,83 units ²	CA✓ area of DEOJ
	[23]

5 NSC – Marking Guidelines June Common Test 2024

2.1.1	radius = 3 units	A✓ answer	(1)
2.1.2	$(x-3)^2 + (y+2)^2 = 3^2$	$CA\checkmark (x-3)^2 + (y+2)^2 = 3^2$	2
			(1)
2.2	For x-intercepts, let $y = 0$:		
	$(x-3)^2 + (0+2)^2 = 3^2$	CA \checkmark substitute $y = 0$	
	$\left(x-3\right)^2=5$		
	$x-3 = +\sqrt{5}$ or $x-3 = -\sqrt{5}$		
	$x = 3 + \sqrt{5} = 5,24$ or $x = 3 - \sqrt{5} = 0,76$	$CA\checkmark$ values of x	
	$AB = 3 + \sqrt{5} - \left(3 - \sqrt{5}\right)$	CA✓ subtraction	
	$=2\sqrt{5}=4,47$ units	CA✓ answer	(4)
	OR	OR	
	For x-intercepts, let $y = 0$:		
	$(x-3)^2 + (0+2)^2 = 3^2$	CA \checkmark substitute $y = 0$	
	$\left(x-3\right)^2=5$		
	$x^2 - 6x + 9 = 5$		
	$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(4)}}{2(1)}$		
	$x = 3 + \sqrt{5} = 5,24$ or $x = 3 - \sqrt{5} = 0,76$	$CA\checkmark$ values of x	
	$AB = 3 + \sqrt{5} - (3 - \sqrt{5})$	CA✓ subtraction	
	$=2\sqrt{5}=4,47$ units	CA✓ answer	(4)
	OR	OR	
	A K B		
	P(3;-2)		
	$AP^2 = AK^2 + PK^2$ [Pythagoras]	CA ✓ applying Theorem of	
	$3^2 = AK^2 + 2^2$	Pythagoras CA✓ substitution	
	$AK = \sqrt{5}$	CA ✓ substitution CA ✓ length of AK	
	$AK = BK$ [line from centre \perp to chord]		
	$\therefore AB = 2\sqrt{5}$	CA✓ answer	(4)
			(4)

6 NSC – Marking Guidelines June Common Test 2024

2.3	$x^2 + 2x + y^2 - 8y - 8 = 0$	
2.3	$x^{2} + 2x + y^{2} - 8y - 8 = 0$ $x^{2} + 2x + 1 + y^{2} - 8y + 16 = 8 + 1 + 16$	A✓ completing the square
	$(x+1)^2 + (y-4)^2 = 5^2$	$A\checkmark(x+1)^2+(y-4)^2=5^2$
	radius = 5 units	CA✓ radius
	centre: $(-1;4)$	CA✓ coordinates of centre
2.4	Sum of radii $= 3 + 5 = 8$	CA✓ sum of radii
2	Distance between centres = $\sqrt{(-1-3)^2 + (4-(-2))^2}$	CA✓substitution
	$=\sqrt{52} = 7.21$ units	CA✓ distance between centres
	∴ Distance between centres < Sum of radii	CA✓ distance between centres < sum of radii
	∴ The circles will intersect	CA✓ conclusion
		(5)
2.5	y = 3	A✓ answer
	y = -3	A√answer (2)
		[17]

3.1.1	$\cos\theta = \frac{3}{5}$	1	$\mathbf{A}\checkmark \cos\theta = \frac{3}{5}$
	$y^{2} = 5^{2} - 3^{2}$ [Pythagoras] $y = 4$	5 y	$A \checkmark y = 4$
	$\tan \theta = \frac{4}{3}$	3	CA✓ answer (3)
3.1.2	$\sin 2\theta = 2\sin\theta\cos\theta$		A✓ expansion
	$=2\left(\frac{4}{5}\right)\left(\frac{3}{5}\right)$		CA✓ substitution
	$=\frac{24}{25}$		CA✓ answer (3)

NSC – Marking Guidelines

June Common Test 2024

 $RO = \sqrt{k^2 + 6^2}$ A \checkmark RO = $\sqrt{k^2 + 6^2}$ 3.1.3 [Pythagoras] $\sin(90^{\circ} + \theta) = \cos\theta$ $A \checkmark \sin(90^\circ + \theta) = \cos\theta$ $\frac{6}{\sqrt{k^2 + 6^2}} = \frac{3}{5}$ CA✓ substitution $\sqrt{k^2 + 6^2} = 10$ $k^2 + 6^2 = 100$ CA✓ simplification $k^2 = 64$ k = -8CA ✓ answer (5) OR OR A \checkmark RO = $\sqrt{k^2 + 6^2}$ $RO = \sqrt{k^2 + 6^2}$ [Pythagoras] $\cos(90^{\circ} + \theta) = -\sin\theta$ $A \checkmark \cos(90^{\circ} + \theta) = -\sin\theta$ $\frac{k}{\sqrt{k^2+6^2}} = -\frac{4}{5}$ CA✓ substitution $-4\sqrt{k^2+6^2}=5k$ $16(36+k^2)=25k^2$ CA✓ simplification $576 + 16k^2 = 25k^2$ $9k^2 = 576$ $k^2 = 64$ CA√answer (5) OR OR $RO = \sqrt{k^2 + 6^2}$ [Pythagoras] A \checkmark RO = $\sqrt{k^2 + 6^2}$ $RP^2 = OP^2 + OR^2$ [Pythagoras in $\triangle POR$] $A\checkmark$ Pythagoras in $\triangle POR$ $(k-3)^2 + (6-4)^2 = 5^2 + (k^2 + 36)$ CA✓ substitution $k^2 - 6k + 9 + 4 = 25 + k^2 + 36$ CA✓ simplification -6k = 48CA ✓ answer k = -8(5)OR $A \checkmark m \text{ of OP}$ $m_{OR} = \frac{6-0}{k-0}$ $m_{OP} \times m_{OR} = -1$ $A \checkmark m \text{ of } OR$ A✓ condition for gradients of $[OR \perp OP]$ ⊥ lines $\therefore \frac{4}{3} \times -\frac{6}{k} = -1$ CA✓ substitution CA√answer k = -8(5)

3.2	$\cos(385^{\circ} + \beta).\sin(35^{\circ} - \beta) + \sin(25^{\circ} + \beta).\sin(55^{\circ} + \beta)$	
	$= \cos(25^{\circ} + \beta) \cdot \sin(35^{\circ} - \beta) + \sin(25^{\circ} + \beta) \cdot \cos[90^{\circ} - (55^{\circ} + \beta)]$	$A\checkmark \cos(25^\circ + \beta)$
	$=\cos(25^{\circ}+\beta).\sin(35^{\circ}-\beta)+\sin(25^{\circ}+\beta).\cos(35^{\circ}-\beta)$	$A\checkmark \cos(35^{\circ}-\beta)$
	$= \sin(25^\circ + \beta + 35^\circ - \beta)$ $= \sin 60^\circ$	A✓ applying compound angle identity
	$=\frac{\sqrt{3}}{2}$	A✓ answer (4)
	OR	OR
	$\cos(385^{\circ} + \beta).\sin(35^{\circ} - \beta) + \sin(25^{\circ} + \beta).\sin(55^{\circ} + \beta)$	$A\checkmark \cos(25^\circ + \beta)$
	$= \cos(25^{\circ} + \beta).\cos[90^{\circ} - (35^{\circ} - \beta)] + \sin(25^{\circ} + \beta).\sin(55^{\circ} + \beta)$	$A\checkmark \sin(55^\circ + \beta)$
	$= \cos(25^{\circ} + \beta) \cdot \cos(55^{\circ} + \beta) + \sin(25^{\circ} + \beta) \cdot \sin(55^{\circ} + \beta)$ $= \cos[25^{\circ} + \beta - (55^{\circ} + \beta)]$	A✓ applying compound angle identity
	$=\cos(-30^\circ)$	
	$=\frac{\sqrt{3}}{2}$	A✓ answer (4)
3.3.1	$\sin 3\theta$	
	$=\sin(2\theta+\theta)$	A replace 3θ by $(2\theta + \theta)$
	$= \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$ $= 2\sin \theta \cos^2 \theta + (2\cos^2 \theta - 1)\sin \theta$	A ✓ compound angle expansion A ✓ sine double angle expansion A ✓ cosine double angle
	$= 2\sin\theta\cos^2\theta + 2\sin\theta\cos^2\theta - \sin\theta$	expansion A✓ simplification
	$=4\sin\theta\cos^2\theta-\sin\theta$	(5)
	OR	OR
	$\sin 3\theta$	
	$=\sin(2\theta+\theta)$	A replace 3θ by $(2\theta + \theta)$
	$= \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$	A✓ compound angle expansion
	$= 2\sin\theta\cos^2\theta + \left(1 - 2\sin^2\theta\right)\sin\theta$	A√sine double angle expansion A√ cosine double angle expansion
	$= 2\sin\theta\cos^2\theta + \sin\theta - 2\sin^3\theta$ = $2\sin\theta\cos^2\theta + \sin\theta - 2\sin\theta(1-\cos^2\theta)$	Capansion
	$= 2\sin\theta\cos^2\theta + \sin\theta - 2\sin\theta + 2\sin\theta\cos^2\theta$ $= 4\sin\theta\cos^2\theta - \sin\theta$	A✓ simplification (5)

9 NSC – Marking Guidelines

	OR		OR
	$\sin 3\theta$		
	$=\sin(2\theta+\theta)$		A replace 3θ by $(2\theta + \theta)$
	$= \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$		A✓ compound angle expansion
	$= 2\sin\theta\cos^2\theta + \left(\cos^2\theta - \sin^2\theta\right)\sin\theta$		A√ sine double angle expansion A✓ cosine double angle expansion
	$= 2\sin\theta\cos^2\theta + \sin\theta\cos^2\theta - \sin^3\theta$		•
	$= 3\sin\theta\cos^2\theta - \sin\theta\left(1 - \cos^2\theta\right)$		
	$= 3\sin\theta\cos^2\theta - \sin\theta + \sin\theta\cos^2\theta$		A✓ simplification
	$=4\sin\theta\cos^2\theta-\sin\theta$		(5)
3.3.2	$\sin 3\theta + \sin \theta$		
3.3.2	$2+2\cos 2\theta$		
	$4\sin\theta\cos^2\theta-\sin\theta+\sin\theta$		
	$-{2+2\cos 2\theta}$		
	$4\sin\theta\cos^2\theta$		A✓ numerator simplified
	$=\frac{1}{2+2(2\cos^2\theta-1)}$		A✓ cos double angle expansion
	$4\sin\theta\cos^2\theta$		
	$=\frac{1}{2+4\cos^2\theta-2}$		
	$4\sin\theta\cos^2\theta$		A✓ denominator simplified
	$=\frac{1}{4\cos^2\theta}$		A denominator simplified
	$=\sin\theta$		(3)
3.3.3	$2 + 2\cos 2\theta = 0$		$A\checkmark$ equating denominator to 0
	$\cos 2\theta = -1$		$A\checkmark \cos 2\theta = -1$
	$\therefore 2\theta = 180^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$	Penalty of 1 if	$CA \checkmark 2\theta = 180^{\circ} + k.360^{\circ}$
	$\theta = 90^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$	$k \in Z$ is omitted	$CA \checkmark \theta = 90^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$
3.4	Minimum value of $\cos 3x = -1$		A✓ Minimum value of
	The state of the s	Answer only:	$\cos 3x = -1$
	∴ Minimum value of $\cos 3x - 5 = -6$	Full marks	A✓ answer
		1 un murks	(2)
			[29]

10 NSC – Marking Guidelines

June Common Test 2024

4.1	$R\hat{A}B = R\hat{B}A = \beta \qquad [\Delta RAT \equiv \Delta RBT]$	
	$\therefore A\hat{R}B = 180^{\circ} - (R\hat{A}B + R\hat{B}A) \qquad [sum of \angle s of \Delta RAB]$	
	$=180^{\circ}-2\beta$	A✓ answer (1)
4.2	$\hat{RBT} = \alpha$ [alt. $\angle s$; lines]	
	$\frac{h}{\mathrm{BR}} = \sin \alpha$	$A \checkmark \frac{h}{BR} = \sin \alpha$
		Bit
	$BR = \frac{h}{\sin \alpha}$	A✓ BR subject of formula
	$\frac{AB}{\sin A\hat{R}B} = \frac{BR}{\sin R\hat{A}B}$	A✓ applying sine rule
	$AB = \frac{BR.\sin A\hat{R}B}{\sin R\hat{A}B}$	A✓ AB subject of formula
		A AD subject of formula
	$=\frac{h\sin(180^\circ - 2\beta)}{\sin\alpha\sin\beta}$	
	$=\frac{h\sin 2\beta}{\sin \alpha \sin \beta}$	$A\checkmark \sin 2\beta$
	$=\frac{h(2\sin\beta\cos\beta)}{\sin\alpha\sin\beta}$	$A\checkmark 2\sin\beta\cos\beta$
	$=\frac{2h\cos\beta}{\sin\alpha}$	(6)
	OR	OR
	$R\hat{B}T = \alpha \qquad [alt. \angle s; \parallel lines]$	
	$\frac{h}{BR} = \sin \alpha$	$A \checkmark \frac{h}{BR} = \sin \alpha$
	$BR = \frac{h}{\sin \alpha}$	A ✓ BR subject of formula
	$AB^2 = BR^2 + AR^2 - 2BR.AR.\cos(180^\circ - 2\beta)$	A ✓ applying cosine rule
	$=2BR^2-2BR^2.\cos(180^\circ-2\beta)$	
	$=2BR^2+2BR^2.\cos 2\beta$	$A\checkmark -\cos(180^\circ - 2\beta) = \cos 2\beta$
	$=2BR^{2}\left(1+\cos 2\beta\right)$	
	$=2BR^2\left(1+2\cos^2\beta-1\right)$	$\mathbf{A} \checkmark \cos 2\beta = 2\cos^2 \beta - 1$
	$=4BR^2\cos^2\beta$	
	$\therefore AB = 2BR \cos \beta$ $2h \cos \beta$	A✓ square root on LHS and
	$=\frac{2h\cos\beta}{\sin\alpha}$	RHS (6)
4.3	$5,4 = \frac{2h\cos 65^{\circ}}{\sin 51^{\circ}}$	
4.3		A✓ substitution
	$h = \frac{5.4 \times \sin 51^{\circ}}{2\cos 65^{\circ}}$ Accept 4.96 units as answer	$A \checkmark h$ subject of formula
	units as answer	CA√ answer (3)
	h = 5 units	CA ✓ answer (3) [10]
<u> </u>	NOW SAEXA	[10]

11 NSC – Marking Guidelines

June Common Test 2024

5.1	a = 2	A✓ answer (1)
5.2	(-180°;-1,73) (-150°;-2) (0;1,73) (120°;0) (180°;-1,73) (180°;-1,73)	A \checkmark shape A \checkmark turning points A \checkmark x-intercepts A \checkmark y-intercept
5.3.1	$y \in [-2; 2]$ OR $-2 \le y \le 2$ Penalty of 1 mark if one or both end points are excluded	(4) $A \checkmark A \checkmark \text{ answer}$ (2)
5.3.2	$period = \frac{360^{\circ}}{3}$ $= 120^{\circ}$ Answer only: Full marks	$A\checkmark \frac{360^{\circ}}{3}$ $A\checkmark \text{ answer}$ (2)
5.4	$2\sin x = 2\cos(x - 30^{\circ})$ $\sin x = \cos(x - 30^{\circ})$ $\sin x = \sin[90^{\circ} - (x - 30^{\circ})]$ $\sin x = \sin(-x + 120^{\circ})$	A✓ equating A✓ co-function
	$x = -x + 120^{\circ} + k.360^{\circ} \text{ or } x = 180^{\circ} - (-x + 120^{\circ}) + k.360^{\circ},$ $k \in \mathbb{Z}$ $2x = 120^{\circ} + k.360^{\circ} \qquad x = 300^{\circ} + x + k.360^{\circ}$ $x = 60^{\circ} + k.180^{\circ} \qquad \text{no solution}$ In the interval $x \in [-180^{\circ}; 180^{\circ}]$: $x = 60^{\circ} \text{ or } x = -120^{\circ}$	A both solutions $CA \checkmark x = 60^{\circ}$ $CA \checkmark x = -120^{\circ}$ (5)

12 NSC – Marking Guidelines

OR	OR
$2\sin x = 2\cos(x - 30^\circ)$	A✓ equating
$\sin x = \cos(x - 30^\circ)$	71 equating
$\cos(90^\circ - x) = \cos(x - 30^\circ)$	A✓ co-function
$90^{\circ} - x = x - 30^{\circ} + k.360^{\circ}$ or $90^{\circ} - x = 360^{\circ} - (x - 30^{\circ}) + k.360^{\circ}$,	A✓ both solutions
$k \in \mathbb{Z}$	
$2x = 120^{\circ} + k.360^{\circ} \qquad x = 300^{\circ} + x + k.360^{\circ}$	
$x = 60^{\circ} + k.180^{\circ} $ no solution	
In the interval $x \in [-180^{\circ}; 180^{\circ}]$: $x = 60^{\circ}$ or $x = -120^{\circ}$	$CA \checkmark x = 60^{\circ}$
x = 60 or x = -120	$CA \checkmark x = 60$ $CA \checkmark x = -120^{\circ}$
	(5)
OR	OR
$2\sin x = 2\cos(x - 30^\circ)$	A ✓ equating
$\sin x = \cos(x - 30^\circ)$ $\sin x = \cos(x - 30^\circ) + \sin x \sin x \cos^2 $	A ✓ compound angle
$\sin x = \cos x \cos 30^\circ + \sin x \sin 30^\circ$	expansion
$\sin x = \cos x \cdot \frac{\sqrt{3}}{2} + \sin x \cdot \frac{1}{2}$	
$\frac{1}{\sqrt{3}}$	
$\frac{1}{2}\sin x = \cos x \cdot \frac{\sqrt{3}}{2}$	
$\sin x = \sqrt{3}\cos x$	
$\tan x = \sqrt{3}$	A $\checkmark \tan x = \sqrt{3}$
$x = 60^{\circ} + k.180^{\circ}$	
In the interval $x \in [-180^{\circ}; 180^{\circ}]$:	
$x = 60^{\circ}$ or $x = -120^{\circ}$	$CA \checkmark x = 60^{\circ}$
	$CA \checkmark x = -120^{\circ} $ (5)
$5.5.1 x = -90^{\circ} \text{or} x = 90^{\circ}$	A√A√
	(2)
$5.5.2 \mid x \in (-120^{\circ}; 60^{\circ}) \text{OR} -120^{\circ} < x < 60^{\circ}$	CA✓CA✓
Penalty of 1 mark if one or	(2)
both end points are included	
	[18]

13 NSC – Marking Guidelines June Common Test 2024

6.1.1	PRS = 90°	[tangent \(\precedent \) diameter]	S✓R✓	(2)
6.1.2 (a)	$P\hat{S}R = \hat{R}_1$ $= 48^{\circ}$ $\therefore \hat{P} = 180^{\circ} - (P\hat{S}R + P\hat{R}S)$	[tan-chord-theorem] [sum of \angle s of \triangle PSR]	S/R √ A √ PŜR = 48°	(-)
	$= 180^{\circ} - (48^{\circ} + 90^{\circ})$ $= 42^{\circ}$		CA✓ answer	(3)
		in semi-circle] terior \angle of Δ PTR]	OR S/R ✓ S✓ A✓ answer	(3)
6.1.2 (b)	$\hat{R}_2 = 90^{\circ} - 48^{\circ} = 42^{\circ}$ $\hat{V}_1 = \hat{R}_2$ $= 42^{\circ}$	[∠s in same segment]	$A \checkmark \hat{R}_2 = 42^{\circ}$ $R \checkmark$ $CA \checkmark \text{ answer}$	(3)
6.1.3		[exterior \angle of \triangle QSR]	S/R √	
	$\hat{T}_1 = 90^{\circ}$ $\therefore V\hat{T}S = 90^{\circ} + \hat{T}_2$ But: $\hat{T}_2 = \hat{S}_1$ $\therefore P\hat{Q}S = V\hat{T}S$	[∠ in semi-circle] [∠s in same segment]	$S \checkmark \hat{T}_1 = 90^{\circ}$ $S \checkmark V \hat{T} S = 90^{\circ} + \hat{T}_2$ $S/R \checkmark$	
	OR		OR	(4)
	$\hat{V}_1 = \hat{P}$ PTVQ is a cyclic quadrilateral $\therefore P\hat{Q}S = V\hat{T}S$	[both = 42°] [converse: ext. \angle = opp int \angle] [ext. \angle = opp int \angle]	S✓ S✓R✓ R✓	(4)
	OR		OR	(4)
	$\hat{PQS} = 180^{\circ} - (\hat{P} + \hat{S}_2)$	[sum of \angle s of \triangle PQS]	S✓ R✓	
	$\hat{\mathbf{VTS}} = 180^{\circ} - (\hat{\mathbf{V}}_1 + \hat{\mathbf{S}}_2)$	[sum of \angle s of \triangle VTS]	S/R √	
	$\therefore P\hat{Q}S = V\hat{T}S$	$[\hat{V}_1 = \hat{P}; \text{ proved above}]$	R✓	(4)

14 NSC – Marking Guidelines

6.2	$\hat{O}_1 = 2 \times \hat{A}$	$[\angle \text{ at centre} = 2 \times \angle \text{ at circumf.}]$	S/R √
	$= 2 \times 66^{\circ} = 132^{\circ}$		A✓ answer
	$\hat{\mathbf{C}}_1 = \hat{\mathbf{E}}$	[ext. ∠ of cyclic quad.]	S/R✓
	= 42°		✓A answer
	$\hat{\mathbf{B}}_2 = \hat{\mathbf{O}}_1 - \hat{\mathbf{C}}_1$	[ext. \angle of \triangle OBC]	
	$=132^{\circ}-42^{\circ}=90^{\circ}$		\checkmark A 132° – 42° = 90°
	$\therefore AB = BC$	[line from centre \perp to chord]	R✓
			(6)
			[18]

15 NSC – Marking Guidelines June Common Test 2024

QUESTION 7

7.1 **NOTE:** If there is no construction: 0/5 marks U Draw diameter SP ✓ construction Join P to R $\hat{PSV} = 90^{\circ}$ S/R✓ [tangent ⊥ diameter] $\hat{VST} = 90^{\circ} - \hat{TSP}$ $\hat{SRP} = 90^{\circ}$ S/R✓ [∠ in semi-circle] $T\hat{R}S = 90^{\circ} - P\hat{R}T$ But: $T\hat{S}P = P\hat{R}T$ $[\angle s \text{ in same segment}]$ S√R✓ $\therefore \hat{VST} = \hat{TRS}$ $V\hat{S}T = \hat{R}$ (5) OR OR OR $90^{\circ} - x$ $180^{\circ} - 2x$ Draw radii OT and OS. ✓ construction Let $O\hat{S}T = x$. S/R✓ $\hat{OTS} = x$ $[\angle s]$ opposite equal radii $T\hat{O}S = 180^{\circ} - 2x$ [sum of \angle s of a Δ] S✓R✓ $\hat{TRS} = 90^{\circ} - x$ $[\angle$ at centre = $2 \times \angle$ at circumf.] $\hat{OSV} = 90^{\circ}$ S/R✓ [tangent \perp radius] $V\hat{S}T = 90^{\circ} - x$ (5) $V\hat{S}T = T\hat{R}S$ $V\hat{S}T = \hat{R}$ OR $[both = 90^{\circ} -$

16 NSC – Marking Guidelines

7.2.1	$\hat{\mathbf{F}}_2 = \hat{\mathbf{G}}_4 = x$	[tan-chord-theorem]	S✓R✓
	$\hat{\mathbf{P}} = \hat{\mathbf{G}}_4 = x$ $\hat{\mathbf{G}}_2 = \hat{\mathbf{P}} = x$	[tan-chord-theorem]	S✓R✓
	$\hat{\mathbf{G}}_2 = \hat{\mathbf{P}} = \mathbf{x}$	[alt. \angle s; GE HP]	S✓R✓
7.2.2	In ΔHMG and ΔEFG:		(6)
	$1. \hat{\mathbf{H}}_2 = \hat{\mathbf{E}}$	$[\angle s \text{ in the same segment}]$	S✓R✓
	2. $\hat{G}_3 = \hat{G}_1$	$[\angle s $ subtended by = chords $]$	S✓ R✓
	3. $\hat{M}_3 = E\hat{F}G$	[sum of \angle s of a Δ]	
	∴ ∆HMG ∆EFG	$[\angle \angle \angle]$	R✓
			(5)
7.2.3	$\frac{\text{HM}}{\text{EF}} = \frac{\text{HG}}{\text{EG}}$	$[\mid \mid \Delta s]$	S✓R✓
	But: $EF = PH$	[given]	
	$\therefore \frac{HM}{PH} = \frac{HG}{EG}$		$S\checkmark \frac{HM}{H} = \frac{HG}{H}$
			$\frac{\text{PH}}{\text{PH}} = \frac{\text{EG}}{\text{EG}}$
	And PH.HG = EG.HM		(3)
			[19]

17 NSC – Marking Guidelines

June Common Test 2024

QUESTION 8

8.1	$AB^2 = AC^2 - BC^2$	[Pythagora	s]	S/R ✓ using Theorem of	
	$=6.5^2-6^2$			Pythagoras	
0.2	$\therefore AB = 2,5 \text{ units}$			A✓	(2)
8.2	In $\triangle CBA$ and $\triangle CEB$:			S✓ identifying triangles	
	$1. \hat{\mathbf{C}} = \hat{\mathbf{C}}$	[common]		S ✓	
	2. $\angle ABC = \angle CEB$	[both = 90]	°; given]	S/R ✓	
	3. $\hat{A} = C\hat{B}E$	[sum of ∠	s of a Δ]		
	∴ ∆CBA ∆CEB	$[\angle \angle \angle]$		R✓	
	$\therefore \frac{CB}{CA} = \frac{CE}{CB}$	[\(\Delta s \)]		g /	
		[40]		S✓	
	$\therefore CB^2 = CA.CE$			$S\checkmark CB^2 = CA.CE$	
	and $CB = \sqrt{CA.CE}$				(6)
	OR			OR	
	$\Delta CBA \parallel \Delta CEB$	[perpendicular from right \(\times	vertex to	S✓ ΔCBA ΔCEB	
		hypotenuse]		R ✓✓✓	
	CB CE	5W		~ /	
	$\therefore \frac{CB}{CA} = \frac{CE}{CB}$	$[\parallel \Delta s]$		S✓	
	\therefore CB ² = CA.CE			$S\checkmark CB^2 = CA.CE$	
	and $CB = \sqrt{CA.CE}$			S CB CHICE	(6)
8.3	$6 = \sqrt{6,5.CE}$			A✓ substitution	, ,
	36 = 6.5.CE	Penalty of 1 ma	rk for incorrect		
	CE = 5.5 units	rounding off (5)	,54 units)	A✓ answer	
0.4	A.D. 65 55 1 1			G + /	(2)
8.4	AE = 6,5 - 5,5 = 1 unit	Acc	eept 0,96 units	CA✓ answer	
		7100	vept 0,50 times		(1)
8.5	$\frac{BD}{BD} = \frac{AE}{BD}$ [prop	o. theorem; AB ED] or [1:	ine \parallel to side of Δ	S✓R✓	
	BC AC	, II J L	,,,		
	$=\frac{1}{6.5}$				
	6,5				
	Also: $\frac{BD}{BC} = \frac{EF}{EC}$ [prop. theorem; EB FD] or [line to side of Δ]		S/R✓		
	$\therefore \frac{1}{6,5} = \frac{EF}{5,5}$ Penalise only once if parallel lines are left out in reason			CA✓ substitution	
	$\therefore EF = \frac{1 \times 5, 5}{6, 5}$				
		Δ.	cept 0,82 units	CA√ answer	
	$\therefore EF = \frac{11}{13} \text{ units} =$	= 0,85 units	ccpt 0,62 units	CI WIND IT UI	(5)
					[16]

TOTAL: 150