

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

VHEMBE WEST DISTRICT

GRADE 12

MATHEMATICS P1 PRE-MIDYEAR EXAMINATION 2024

MARKS: 120

TIME. : 2,5 *HOURS*

This question paper consists of 7 pages including the cover page

Mathematics/P1 2 Pre Midyear exam 2024 NSC

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 11 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. An information sheet with formulae is included at the end of the question paper.
- 10. Write neatly and legibly.

Mathematics/P1 3 Pre Midyear exam 2024 NSC

QUESTION 1

1.1 Solve for x:

1.1.1
$$x^2 - 5x - 6 = 0$$
 (2)

1.1.2
$$(3x-1)(x-4)=16$$
 (correct to TWO decimal places) (4)

$$1.1.3 4x - x^2 \ge 0 (3)$$

1.1.4
$$\frac{5^{2x} - 1}{5^x + 1} = 4$$
 (3)

1.2 Solve simultaneously for x and y:

$$x+3y=2$$
 and $x^2+4xy-5=0$ (5)

1.3 A rectangular box has dimensions a, b and c. The area of the surfaces are $2\sqrt{10}$; $3\sqrt{2}$ and $6\sqrt{5}$, as shown in the diagram below.

Calculate, **without using a calculator**, the volume of the rectangular box. (5) [22]

QUESTION 2

- 2.1 The first FOUR terms of a quadratic pattern are: 15; 29; 41; 51
 - 2.1.1 Write down the value of the 5^{th} term. (1)
 - 2.1.2 Determine an expression for the n^{th} term of the pattern in the form $T_n = an^2 + bn + c$. (4)
 - 2.1.3 Determine the value of T_{27} (2)

Mathematics/P1 4 Pre Midyear exam 2024 NSC

- 2.2 Given a geometric sequence: 36; -18; 9; ...
 - 2.2.1 Determine the value of r, the common ratio. (1)

2.2.2 Calculate *n* if
$$T_n = \frac{9}{4096}$$
 (3)

2.2.3 Calculate
$$S_{\infty}$$
 (2)

2.2.4 Calculate the value of
$$\frac{T_1 + T_3 + T_5 + T_7 + ... + T_{499}}{T_2 + T_4 + T_6 + T_8 + ... + T_{500}}$$
 (4)

QUESTION 3

3.1 The first three terms of an arithmetic sequence are: 2p + 3; p + 6 and p - 2.

3.1.1 Show that
$$p = 11$$
. (2)

3.1.2 Calculate the smallest value of n for which $T_n < -55$. (3)

3.2 Given that
$$\sum_{k=1}^{6} (x-3k) = \sum_{k=1}^{9} (x-3k)$$
, prove that $\sum_{k=1}^{15} (x-3k) = 0$. (5)

QUESTION 4

Given the exponential function: $g(x) = \left(\frac{1}{2}\right)^x$

- 4.1 Write down the range of g. (1)
- 4.2 Determine the equation of g^{-1} in the form y = ... (2)
- 4.3 Is g^{-1} a function? Justify your answer. (2)
- 4.4 The point M(a; 2) lies on g^{-1} .
 - 4.4.1 Calculate the value of a. (2)
 - 4.4.2 M', the image of M, lies on g. Write down the coordinates of M'. (1)
- 4.5 If h(x) = g(x+3) + 2, write down the coordinates of the image of M on h. (3) [11]

Mathematics/P1 5 Pre Midyear exam 2024 NSC

QUESTION 5

5.1 Given:
$$f(x) = \frac{1}{x+2} + 3$$

- 5.1.1 Determine the equations of the asymptotes of f. (2)
- 5.1.2 Write down the *y*-intercept of f. (1)
- 5.1.3 Calculate the *x*-intercept of f. (2)
- Sketch the graph of f. Clearly label ALL intercepts with the axes and any asymptotes. (3)
- Sketched below are the graphs of $k(x) = ax^2 + bx + c$ and h(x) = -2x + 4. Graph k has a turning point at (-1; 18). S is the x-intercept of h and k. Graphs h and k also intersect at T.

- 5.2.1 Calculate the coordinates of S. (2)
- 5.2.2 Determine the equation of k in the form $y = a(x+p)^2 + q$ (3)
- 5.2.3 If $k(x) = -2x^2 4x + 16$, determine the coordinates of T. (4)
- 5.2.4 Determine the value(s) of x for which k(x) < h(x). (2)
- 5.2.5 It is further given that k is the graph of g'(x).
 - (a) For which values of x will the graph of g be concave up? (2)
 - (b) Sketch the graph of g, showing clearly the x-values of the turning points and the point of inflection.

(3) [**24**]

SA EXAM

Mathematics/P1 6 Pre Midyear exam 2024 NSC

QUESTION 6

6.1 Given $f(x) = x^2 + 2$.

Determine f'(x) from first principles. (5)

6.2 Determine $\frac{dy}{dx}$ if:

6.2.1
$$y = 4x^3 + \frac{2}{x}$$
 (3)

6.2.2
$$y = 4.\sqrt[3]{x} + (3x^3)^2$$
 (4)

6.3 If g is a linear function with g(1) = 5 and g'(3) = 2, determine the equation of g in the form y = (3)

[15]

QUESTION 7

A cubic function $h(x) = -2x^3 + bx^2 + cx + d$ cuts the x-axis at (-3; 0); $\left(-\frac{3}{2}; 0\right)$ and (1; 0).

7.1 Show that
$$h(x) = -2x^3 - 7x^2 + 9$$
. (3)

- 7.2 Calculate the *x*-coordinates of the turning points of h. (3)
- 7.3 Determine the value(s) of x for which h will be decreasing. (2)
- 7.4 For which value(s) of x will there be a tangent to the curve of h that is parallel to the line y-4x=7. (4)

Mathematics/P1 7 Pre Midyear exam 2024 NSC

QUESTION 8

A cone with radius r cm and height AB is inscribed in a sphere with centre O and a radius of 8 cm. OB = x.

Volume of sphere = $\frac{4}{3} \pi r^3$ Volume of cone = $\frac{1}{3} \pi r^2 h$

8.1 Calculate the volume of the sphere. (1)

8.2 Show that $r^2 = 64 - x^2$. (1)

8.3 Determine the ratio between the largest volume of this cone and the volume of the sphere.

(7) [**9**]

TOTAL: 120

Mathematics/P1 Pre Midyear exam 2024
NSC

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad A = P(1 + ni) \qquad A = P(1 - ni) \qquad A = P(1 - i)^n$$

$$A = P(1 + i)^n \sum_{i=1}^n 1 = n \qquad \sum_{i=1}^n i = \frac{n(n+1)}{2} \qquad T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} (2a + (n-1)d) T_n = ar^{n-1} S_n = \frac{a(r^n - 1)}{r-1} ; \quad r \neq 1 \quad S_n = \frac{a}{1-r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i} \quad f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2 \ln \Delta ABC; \qquad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc \cos A$$

$$area \Delta ABC = \frac{1}{2} ab \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha .\cos \beta + \cos \alpha .\sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha .\cos \beta - \cos \alpha .\sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha .\cos \beta - \sin \alpha .\sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \sin \alpha .\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \cos \alpha .\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \cos \alpha .\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha .\cos \beta + \cos \alpha .\cos \beta + \cos \alpha$$

