

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

TECHNICAL MATHEMATICS P2

NOVEMBER 2023

MARKS: 150

TIME: 3 hours

This question paper consists of 16 pages and a 2-page information sheet.

2 NSC DBE/November 2023

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 11 questions.
- 2. Answer ALL the questions in the SPECIAL ANSWER BOOK provided.
- 3. Clearly show ALL calculations, diagrams, graphs, etc. that you used in determining your answers.
- 4. Answers only will NOT necessarily be awarded full marks.
- 5. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 8. An information sheet with formulae is included at the end of the question paper.
- 9. Write neatly and legibly.

3 NSC

DBE/November 2023

QUESTION 1

The diagram below shows $\triangle DEF$ with vertices D(-4;8), E(4;-4) and F(-2;-8). The angle of inclination of DE with the positive x-axis is α .

 $\stackrel{\smallfrown}{E} = 90^{\text{o}}$

- 1.1 Determine the gradient of DE. (2)
- 1.2 Determine the size of angle α . (3)
- Determine whether the line parallel to DE, passing through F, also passes through point (-10; 5).
- 1.4 Calculate the area of ΔDEF . (5) [14]

4 NSC DBE/November 2023

QUESTION 2

2.1 In the diagram below, O is the centre of the circle.

JK is a tangent to the circle at point J(12; 9).

- 2.1.1 Determine the equation of the circle passing through J. (2)
- 2.1.2 Complete the following:

$$m_{\rm OJ} \times m_{\rm JK} = \dots \tag{1}$$

2.1.3 Determine the equation of JK in the form y = ... (4)

2.2 Given: $\frac{x^2}{11} + \frac{y^2}{64} = 1$

2.2.1 Express the equation in the form
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 (1)

2.2.2 Hence, sketch the graph defined by
$$\frac{x^2}{11} + \frac{y^2}{64} = 1$$
 (2) [10]

5 NSC DBE/November 2023

QUESTION 3

3.1 Given: $x = 152, 4^{\circ}$ and $y = 24, 8^{\circ}$

Determine the following:

$$3.1.1 \qquad \sin\left(x - y\right) \tag{2}$$

$$3.1.2 \qquad \frac{1}{2}\sec\left(\frac{x}{2} + 80^{\circ}\right) \tag{2}$$

3.2 Given:
$$\sin \beta = -\frac{4}{5}$$
 and $\beta \in (90^{\circ}; 270^{\circ})$

Determine the following without the use of a calculator:

3.2.1
$$\operatorname{cosec} \beta$$
 (1)

$$3.2.2 \tan \beta + \cos \beta (5)$$

Determine the value(s) of
$$x$$
 if $\cos x = -\sin 56.7^{\circ}$ and $x \in (0^{\circ}; 360^{\circ})$ [14]

QUESTION 4

4.1 Complete the following:

4.1.1
$$\operatorname{cosec} A = \frac{\dots}{\dots}$$
 (1)

4.1.2
$$\cos(2\pi + A) = \dots$$
 (1)

4.1.3
$$\csc(180^{\circ} + A) = \dots$$
 (1)

4.2 Simplify the following:

$$\sin(180^{\circ} + A) \cdot \cot(360^{\circ} - A) \cdot \cos(2\pi - A) + \sin^{2}(360^{\circ} - A)$$
 (7)

4.3 Given:
$$\frac{\csc x - \csc x \cdot \sec x}{\sec x - \left(\tan^2 x + 1\right)} = \cot x$$

4.3.1 Factorise:
$$\sec x - \sec^2 x$$
 (1)

4.3.2 Hence, prove the identity:
$$\frac{\csc x - \csc x \cdot \sec x}{\sec x - \left(\tan^2 x + 1\right)} = \cot x$$
[15]

6 NSC DBE/November 2023

QUESTION 5

The graphs below represent the functions defined by $f(x) = \cos ax$ and $g(x) = \tan x$ for $x \in [0^\circ; 180^\circ]$

Use the graphs above to answer the following:

5.1 Write down:

5.1.1	The value of a	(1)

5.1.2 The period of
$$g$$
 (1)

5.1.3 The value of x for which
$$-\tan x + 1 = 0$$
 (2)

5.1.4 The range of
$$g$$
 (1)

5.1.5 The value(s) of x for which
$$f(x) < 0$$
 (2)

5.2 Determine
$$g(180^{\circ}) - f(180^{\circ})$$
 (2)

5.3 Write down the value(s) of
$$x$$
 for which f is decreasing. (2) [11]

7 NSC DBE/November 2023

QUESTION 6

The picture and diagram below show a crane PQR lifting a box from point M to point R. PQ and MR are perpendicular to the ground level MP, such that PQRM lies in the same vertical plane.

T is a point on MR.

$$PQ = 8 \text{ m}$$
; $PQR = 114^{\circ}$ and $QPR = 49^{\circ}$

- 6.1 Determine the length of PR. (4)
- 6.2 Write down the size of \hat{RPM} (1)
- 6.3 Complete the following ratio with respect to $\triangle RPM$: $\sin R \stackrel{\land}{P}M = \stackrel{\dots}{}$ (1)
- 6.4 If TR = 5 m, determine MT. (3) [9]

8 NSC DBE/November 2023

Give reasons for your statements in QUESTIONS 7, 8 and 9.

QUESTION 7

In the diagram below, O is the centre of the circle. M is the midpoint of chord AB and OM = 3 cm AP is a tangent to the circle at A. AB = OP = 8 cm

Write down, stating a reason, the size of M_1 . (2) 7.1

Give a reason why $\hat{A}_1 = 90^{\circ}$ (1) 7.2

(3) 7.3 Determine the length of AP.

[6]

9 NSC DBE/November 2023

QUESTION 8

8.1 In the diagram below, A, B, E and C are points on the circle with centre O. $\hat{OCB} = 33^{\circ}$

Determine, stating reasons, the size of the following angles:

8.1.1
$$\hat{B}_1$$
 (2)

8.1.2
$$\hat{O}_1$$
 (2)

8.1.3
$$\hat{E}$$
 (4)

10 NSC

DBE/November 2023

8.2 In the diagram below, RT is a tangent to circle ADBC at point C such that $T \stackrel{\circ}{C} B = 37^{\circ}$

AC || DB

- 8.2.1 Write down, stating reasons, FOUR other angles equal to 37° (6)
- 8.2.2 Hence, show that \triangle AEC $\parallel \triangle$ BED (2)
- 8.2.3 Hence, complete the statement $AE \times ED = ... \times ...$ (2)

DBE/November 2023

8.3 In the diagram below, R, Q, P and S are points on the circle. T is a point on PQ.

$$\hat{SQP} = 32^{\circ} \text{ and } \hat{STP} = 68^{\circ}$$

SQ bisects \hat{Q} .

PS = ST

8.3.1 Write down the size of the following angles:

(a)
$$\hat{Q}_1$$

(1)

(b)
$$\hat{P}_2$$

(2)

8.3.2 Hence, show that $\hat{P}_1 = \hat{S}_2$

(5)

[26]

12 NSC DBE/November 2023

QUESTION 9

The diagram below shows $\triangle PQR$ with $ST \parallel QR$.

PS = 8 cm, SQ = 3 cm, RT = 4 cm and QR = 21 cm.

9.1 Give the correct reason for the statement:
$$\frac{PT}{TR} = \frac{PS}{SQ}$$
 (...) (1)

- 9.2 Hence, calculate the length of PT. (2)
- 9.3 Complete the statement and give the correct reason:

$$\frac{ST}{QR} = \frac{PS}{...} \quad (...) \tag{2}$$

9.4 Hence, calculate the length of ST. (2) [7]

QUESTION 10

10.1 The picture and diagram below show two circular pulleys, A and B, connected with a belt and moving anti-clockwise.

Pulley A has a radius of 50 cm and pulley B has a radius of 20 cm.

The belt covers $\frac{5}{9}$ of the arch length of pulley A.

The belt forms tangents to the pulleys at points C, D, E and F.

The arch length of DE = $\frac{160 \pi}{9}$ cm.

14 NSC DBE/November 2023

- 10.1.1 Show that reflex $\stackrel{\frown}{CA}F = 200^{\circ}$ (1)
- 10.1.2 Convert reflex $\overrightarrow{CAF} = 200^{\circ}$ to radians. (1)
- 10.1.3 Hence, determine the major arc length of CF. (3)
- 10.1.4 Pulley A rotates at 500 revolutions per minute (r/min).
 - (a) Calculate the circumferential velocity (cm/min) of a particle on the belt at point F. (3)
 - (b) Hence, determine, in revolutions per second, the rotational frequency of pulley B. (4)
- 10.1.5 Determine the area of the shaded minor sector DBE. (3)
- 10.2 A rectangular advertisement board with a length of 4,6 metres and a breadth of 1,8 metres will be positioned on the semicircular wall as indicated in the diagram below. The height h from the top part of the rectangular board to the top part of the semicircular wall is 0,72 metres longer than the breadth of the rectangular advertisement board.

- 10.2.1 Determine the value of height h. (1)
- 10.2.2 Hence, calculate the length of the diameter of the semicircular wall. (4) [20]

DBE/November 2023

QUESTION 11

11.1 The irregular figure below has a horizontal straight side, 12 cm long, which is divided into 6 equal parts.

The ordinates dividing the parts are 8 cm, 4 cm, 6 cm, h, 7,22 cm, 3,42 cm and 2 cm.

The length of h is the average of the third and fifth ordinates.

- 11.1.1 Write down the width of each of the equal parts. (1)
- 11.1.2 Determine the value of h. (2)
- Hence, determine the area of the irregular figure by using the mid-ordinate rule. (3)

16 **NSC** DBE/November 2023

The pictures below show spherical soccer balls. Picture A represents ball A with 11.2 radius = 11 cm and picture B represents a smaller ball B with radius = x cm.

Calculate x, the radius of ball B, if the volume of ball B is half the volume of ball A. The volume of a sphere is given by $V = \frac{4}{3}\pi r^3$

The diagram below shows a closed cone. The radius of the cone is 5 cm. It has a 11.3 height of 6 cm and a slant height (1) of 7,81 cm.

11.3.1 Calculate the surface area of the cone, where: (2) Surface area = $\pi r^2 + \pi r l$

The radius of the cone is increased by 20% and the height of the cone is 11.3.2 decreased by 10%.

> Determine whether the new surface area is greater than the surface area of the original cone.

(5)

(5)

[18]

TOTAL: 150

INFORMATION SHEET: TECHNICAL MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = -\frac{b}{2a}$$

$$x = -\frac{b}{2a} \qquad \qquad y = \frac{4ac - b^2}{4a}$$

$$a^x = b \Leftrightarrow x = \log_a b$$
, $a > 0$, $a \ne 1$ and $b > 0$

$$A = P(1 + ni)$$

$$A = P(1 + ni)$$
 $A = P(1 - ni)$ $A = P(1 + i)^n$ $A = P(1 - i)^n$

$$A = P(1+i)'$$

$$A = P(1-i)'$$

$$i_{eff} = \left(1 + \frac{i}{m}\right)^m - 1$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$
, $n \neq -1$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C , n \neq -1 \qquad \int kx^n dx = k \cdot \frac{x^{n+1}}{n+1} + c , n \neq -1$$

$$\int \frac{1}{x} dx = \ln x + C, \quad x > 0$$

$$\int \frac{k}{x} dx = k . \ln x + C \,, \ x > 0$$

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C \quad , \ a > 0$$

$$\int k \, a^{nx} \, dx = k \cdot \frac{a^{nx}}{n \ln a} + C \quad , \ a > 0$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_2 + x_1}{2}; \frac{y_2 + y_1}{2}\right)$$

$$M\left(\frac{x_2+x_1}{2};\frac{y_2+y_1}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$\tan \theta = m$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

Area of
$$\triangle$$
 ABC = $\frac{1}{2}$ ab. sin C

$$\sin^2\theta + \cos^2\theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \tan^2 \theta = \sec^2 \theta \qquad 1 + \cot^2 \theta = \csc^2 \theta$$

NSC

DBE/November 2023

 $\pi \operatorname{rad} = 180^{\circ}$

Angular velocity = $\omega = 2 \pi n$ where n = rotation frequency

Angular velocity = $\omega = 360^{\circ} n$ where n = rotation frequency

Circumferential velocity = $v = \pi Dn$ where D = diameter and n = rotation frequency

Circumferential velocity = $v = \omega r$ where $\omega =$ angular velocity and r = radius

Arc length = $s = r\theta$ where r = radius and $\theta = central$ angle in radians

Area of a sector $=\frac{r s}{2}$ where r = radius, s = arc length

Area of a sector $=\frac{r^2 \theta}{2}$ where r = radius and $\theta =$ central angle in radians

 $4h^2 - 4dh + x^2 = 0$ where h = height of segment, d = diameter of circle and x = length of chord

 $A_T = a(m_1 + m_2 + m_3 + ... + m_n)$ where a = width of equal parts, $m_1 = \frac{o_1 + o_2}{2}$ $o_n = n^{th}$ ordinate and n = number of ordinates

OR

 $A_T = a \left(\frac{o_1 + o_n}{2} + o_2 + o_3 + ... + o_{n-1} \right)$ where a = width of equal parts, $o_n = n^{th}$ ordinate and n = number of ordinates

