

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

_ _ _ _ _ _ _ _ _

NOVEMBER 2023

MARKS: 150

TIME: 3 hours

Please turn over

This question paper consists of 9 pages and 1 information sheet.

Copyright reserved

Mathematics/P1

2 NSC

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and nongraphical), unless stated otherwise.
- 7. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. An information sheet with formulae is included at the end of the question paper.
- 10. Write neatly and legibly.

Mathema	tics/P1	3 NSC		DBE/November 2023	
QUEST	QUESTION 1				
1.1	Solve for	<i>x</i> :			
	1.1.1	$x^{2} + x - 12 = 0$			(3)
	1.1.2	$3x^2 - 2x = 6$ (answers correct to	o TWO decimal places)	(4)
	1.1.3	$\sqrt{2x+1} = x-1$			(4)
	1.1.4	$x^2 - 3 > 2x$			(4)
1.2		x and y simultaneously:			
	x + 2 = 2y	and $\frac{1}{x} + \frac{1}{y} = 1$			(5)
1.3	Given: 2'	$^{n+1} + 2^m = 3^{n+2} - 3^n$ where <i>m</i> and <i>n</i>	are integers.		

Determine the value of m + n.

Copyright reserved

EXAM

PERS

(4) [**24**]

4	DBE/November 2023
NSC	

QUESTION 2

Mathematics/P1

2.1	Given the arithmetic series: $7 + 12 + 17 +$		
	2.1.1	Determine the value of T_{91}	(3)
	2.1.2	Calculate S_{91}	(2)
	2.1.3	Calculate the value of <i>n</i> for which $T_n = 517$	(3)
2.2	The follow	wing information is given about a quadratic number pattern:	
	$T_1 = 3, T_2 - T_1 = 9$ and $T_3 - T_2 = 21$		
r.	2.2.1	Show that $T_5 = 111$	(2)
	2.2.2	Show that the general term of the quadratic pattern is $T_n = 6n^2 - 9n + 6$	(3)
	2.2.3	Show that the pattern is increasing for all $n \in N$.	(3) [16]
QUESTION 3			
3.1	Given the geometric series: $3+6+12+$ to <i>n</i> terms.		

3.1.1 Write down the general term of this series.	(1)
---	----	---

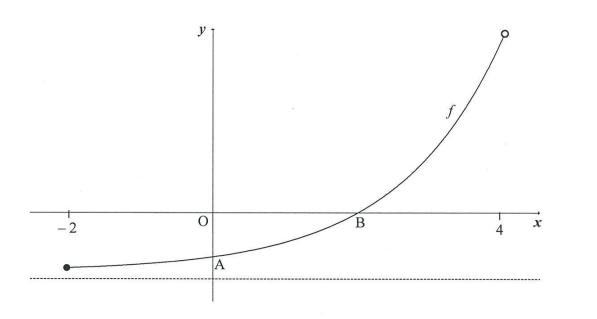
3.1.2 Calculate the value of k such that:
$$\sum_{p=1}^{k} \frac{3}{2} (2)^p = 98\,301 \tag{4}$$

3.2 A geometric sequence and an arithmetic sequence have the same first term.

• The common ratio of the geometric sequence is $\frac{1}{3}$

- The common difference of the arithmetic sequence is 3
- The sum of 22 terms of the arithmetic sequence is 734 more than the sum to infinity of the geometric sequence.

Calculate the value of the first term.


(5) [**10**]

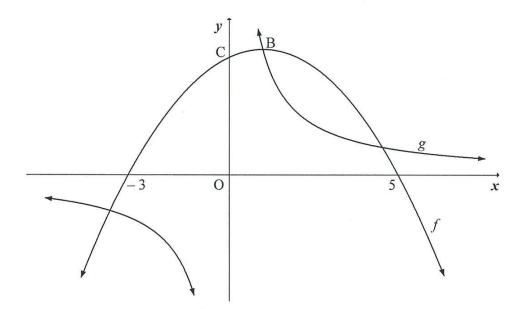
Mathematics/P1

5 NSC DBE/November 2023

QUESTION 4

Sketched below is the graph of $f(x) = 2^x - 4$ for $x \in [-2; 4)$. A and B are respectively the *y*- and *x*-intercepts of *f*.

4.1	Write down the equation of the asymptote of f .	(1)	
4.2	Determine the coordinates of B.	(2)	
4.3	Determine the equation of k, a straight line passing through A and B in the form $k(x) = \dots$	(3)	
4.4	Calculate the vertical distance between k and f at $x = 1$	(3)	
4.5	Write down the equation of g if it is given that $g(x) = f(x) + 4$	(1)	
4.6	Write down the domain of g^{-1} .	(2)	
4.7	Write down the equation of g^{-1} in the form $y = \dots$	(2)	


[14]

Mathematics/P1

6 NSC DBE/November 2023

QUESTION 5

The graphs of $f(x) = -\frac{1}{2}(x-1)^2 + 8$ and $g(x) = \frac{d}{x}$ are drawn below. A point of intersection of f and g is B, the turning point of f. The graph f has x-intercepts at (-3; 0) and (5; 0) and a y-intercept at C.

5.7	h is a tangent to g at R, a point in the first quadrant. Calculate t such that $y = f(x) + t$ intersects g at R.	(4) [18]
5.6	Calculate the values of k so that $h(x) = -2x + k$ will not intersect the graph of g.	(5)
5.5	For which values of x will $f(x).g(x) \le 0$?	(3)
5.4	Write down the range of g.	(1)
5.3	Calculate the value of d .	(1)
5.2	Calculate the coordinates of C.	(2)
5.1	Write down the coordinates of the turning point of f .	(2)

Mathematics/P1

7 NSC DBE/November 2023

(3)

(2)

(2)

(4)

(5) [**16**]

(5)

QUESTION 6

- 6.1 Patrick deposited an amount of R18 500 into an account earning r% interest p.a., compounded monthly. After 6 months, his balance was R19 319,48.
 - 6.1.1 Calculate the value of r.
 - 6.1.2 Calculate the effective interest rate.
- 6.2 Kuda bought a laptop for R10 000 on 31 January 2019. He will replace it with a new one in 5 years' time on 31 January 2024.
 - 6.2.1 The value of the old laptop depreciates annually at a rate of 20% p.a. according to the straight-line method. After how many years will the laptop have a value of R0?
 - 6.2.2 Kuda will buy a laptop that costs R20 000. In order to cover the cost price, he made his first monthly deposit into a savings account on 28 February 2019. He will make his 60th monthly deposit on 31 January 2024. The savings account pays interest at 8,7% p.a., compounded monthly. Calculate Kuda's monthly deposit into this account.
- 6.3 Tino wins a jackpot of R1 600 000. He invests all of his winnings in a fund that earns interest of 11,2% p.a., compounded monthly. He withdraws R20 000 from the fund at the end of each month. His first withdrawal is exactly 1 month after his initial investment. How many withdrawals of R20 000 will Tino be able to make from this fund?

QUESTION 7

- 7.1 Determine f'(x) from first principles if $f(x) = -4x^2$
- 7.2 Determine:

7.2.1 f'(x) if $f(x) = 2x^3 - 3x$ (2)

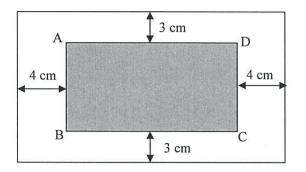
7.2.2
$$D_x \left(7 \cdot \sqrt[3]{x^2} + 2x^{-5} \right)$$
 (3)

For which values of x will the tangent to $f(x) = -2x^3 + 8x$ have a positive gradient? (3)

[13]

Mathematics/P1

8 NSC DBE/November 2023


QUESTION 8

Given: $f(x) = -x^3 + 6x^2 - 9x + 4 = (x-1)^2(-x+4)$

8.1	Determine the coordinates of the turning points of f .	(4)
8.2	Draw a sketch graph of f . Clearly label all the intercepts with the axes and any turning points.	(4)
8.3	Use the graph to determine the value(s) of k for which $-x^3 + 6x^2 - 9x + 4 = k$ will have three real and unequal roots.	(2)
8.4	The line $g(x) = ax + b$ is the tangent to f at the point of inflection of f . Determine the equation of g .	(6)
8.5	Calculate the value of θ , the acute angle formed between g and the x-axis in the first quadrant.	(2) [18]

QUESTION 9

The diagram below represents a printed poster. Rectangle ABCD is the part on which the text is printed. This shaded area ABCD is 432 cm^2 and AD = x cm. ABCD is 4 cm from the left and right edges of the page and 3 cm from the top and bottom of the page.

9.1 Show that the total area of the page is given by:

$$A(x) = \frac{3\,456}{x} + 6x + 480\tag{3}$$

9.2

Determine the value of x such that the total area of the page is a minimum.

Copyright reserved

Mathematics/P1

DBE/November 2023

(2)

(2)

QUESTION 10

10.1 A and B are independent events. $P(A) = \frac{1}{3}$ and $P(B) = \frac{3}{4}$ Determine:

10.1.1 P(A and B)

10.1.2 P(at least ONE event occurs)

10.2 The probability that it will snow on the Drakensberg Mountains in June is 5%.

- When it snows on the mountains, the probability that the minimum temperature in Central South Africa will drop below 0 °C is 72%.
- If it does not snow on the mountains, the probability that the minimum temperature in Central South Africa will drop below 0 °C is 35%.
- 10.2.1 Represent the given information on a tree diagram. Clearly indicate the probabilities associated with EACH branch. (3)
- 10.2.2 Calculate the probability that the temperature in Central South Africa will NOT drop below 0 °C in June 2024. (3)
- 10.3 Ten learners stand randomly in a line, one behind the other.

10.3.1	In how many different ways can the ten learners stand in the line?	(1)
10.3.2	Calculate the probability that there will be 5 learners between the 2 youngest learners in the line.	(4) [15]

TOTAL: 150

Mathematics/P1

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

 $T_n = a + (n-1)d$

A = P(1+ni)

DBE/November 2023

NSC

INFORMATION SHEET

A = P(1 - ni) $A = P(1 - i)^n$ $A = P(1 + i)^n$ $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$

 $S_n = \frac{a(r^n - 1)}{r - 1}$; $r \neq 1$ $S_\infty = \frac{a}{1 - r}$; -1 < r < 1 $T_n = ar^{n-1}$ $F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1-(1+i)^{-n}]}{i}$

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$ $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ m

$$y = mx + c$$

$$m = \tan \theta$$

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

In $\triangle ABC$: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
 $a^{2} = b^{2} + c^{2} - 2bc.\cos A$
 $area \ \triangle ABC = \frac{1}{2}ab.\sin C$
 $\sin(\alpha + \beta) = \sin \alpha.\cos \beta + \cos \alpha.\sin \beta$

 $\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$ $\cos(\alpha + \beta) = \cos \alpha . \cos \beta - \sin \alpha . \sin \beta$ $\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
$$P(A) = \frac{n(A)}{n(S)}$$

 $\hat{y} = a + bx$

P(A or B) = P(A) + P(B) - P(A and B)

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

A D F R

 $\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{\overline{x}}$

Copyright reserved