
You have Downloaded, yet Another Great Resource to assist you with your Studies ③

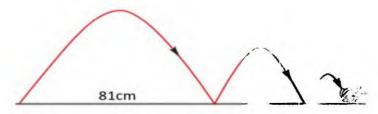
Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

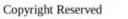
INSTRUCTIONS AND INFORMATION

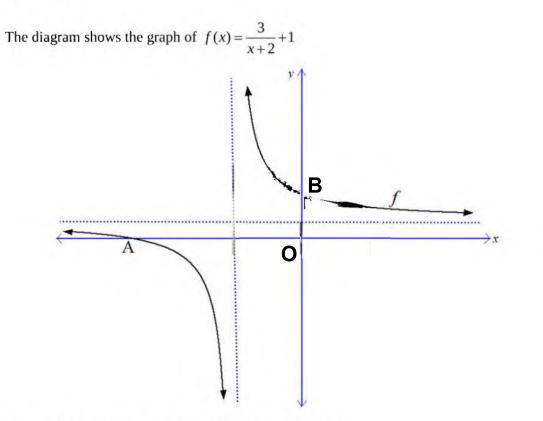
Read the following instructions carefully before answering the questions.


- 1. This question paper consists of 8 questions.
- 2. Answer ALL questions.
- 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.

QUESTION 1

1.1	Consi	der the arithmetic sequence: 8; 15; 22;	
	1.1.1	Determine the 36 th term	(2)
	1.1.2	Calculate the sum of the first 36 terms.	(2)
	1.1.3	If it is given that $T_{72} + T_{72-m} = 786$, determine the value of <i>m</i> .	(4)

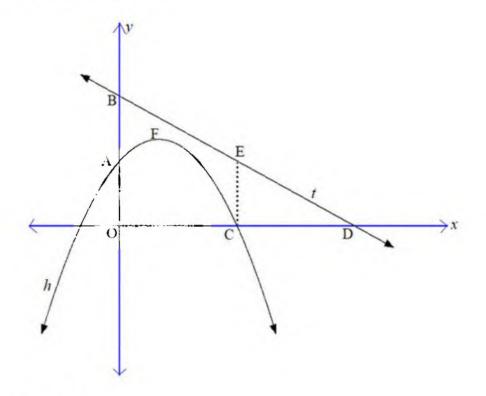

A frog is making a series of jumps. With every next jump, he has only enough energy 1.2 left to jump $\frac{2}{3}$ the distance of his previous jump.


1.2.1	If his first jump is 81cm long, calculate the length of his second jump.	(1)
1.2.2	Determine the length of his ninth jump.	(2)
1.2.3	If the frog continues to jump in this way, will he be able to catch a trapped insect that is 230 cm away from his starting point? Show all your calculations.	
		[14]

QUESTION 2

2.1	The given number pattern is a combination of a quadratic sequence and an arithmetic sequence: 16; 32; 0; 28; -12 ; 24; -20 ; 20;			
	2.1.1	Determine the general term of the quadratic sequence.	(4)	
	2.1.2	Determine the general term of the arithmetic sequence.	(2)	
	2.1.3	The given number pattern has two consecutive terms that are equal in value. Determine the positions of the two terms.	(4)	
2.2	Calcul	ate: $\sum_{k=3}^{9} 2(-3)^k$	(4)	
		v−v	[14]	

QUESTION 3


3.1	Write down the equations of the asymptotes of f .	(2)
3.2	Determine the coordinates of A.	(2)
3.3	Determine the coordinates of B.	(2)
3.4	The graph of g is formed by first reflecting f in the <i>y</i> -axis and then translating it upwards by 2 units. Determine the equation of g .	(2)
3.5	y = x + c is the equation of one of the axes of symmetry of <i>g</i> . Determine the value of <i>c</i> .	(2)
		[10]

QUESTION 4

The sketch below shows the graphs of $h(x) = -x^2 + 2x + p$ and t(x) = mx + 5.

- D is the x-intercept, and B the y-intercept of t.
- A is the *y*-intercept of *h*.
- C is the x-intercept of h.
- F is the turning point of *h*.
- E is a point on *t*, such that EC is parallel to the *y*-axis.
- AB is 2 units and CD is 7 units.

4.1	Show that $p = 3$.	(1)
4.2	Determine the coordinates of F.	(3)
4.3	Determine the coordinates of C.	(3)
4.4	Determine the length of EC.	(5)
		[12]

QUESTION 5

Given:	f(x)	3x', where x	(≥0.

5.1	Determine the equation of f^{-1} .	(3)
5.2	On the same set of axes, draw the graphs of f and f^{-1} , showing the intercepts with the axes as well as coordinates of two points on each graph.	(4)
5.3	Determine the values of x for which $f(x) = f^{-1}(x)$.	(4)

[11]

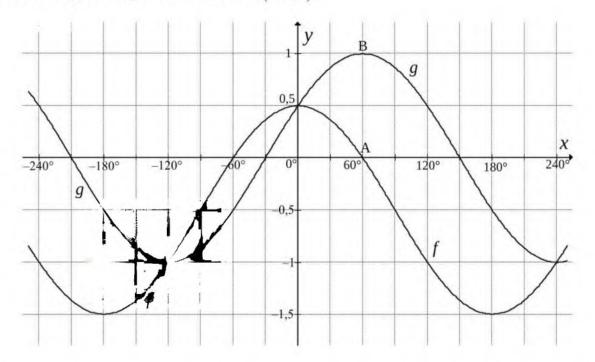
QUESTION 6

6.1	Given: $\tan x = \frac{3}{4}$, where $x \in [180^\circ; 270^\circ]$.	
	With the aid of a sketch, and without the use of a calculator, calculate:	
	6.1.1 $\sin x$	(3)
	6.1.2 $2 - \sin 2x$	(3)

6.1.3
$$\cos^2(90^\circ - x) - 1$$
 (3)

6.2 Evaluate:
$$\frac{-1 + \cos(180^\circ - \theta) \cdot \sin(\theta - 90^\circ)}{\cos(-\theta) \cdot \sin(90^\circ + \theta) \cdot \tan^2(540^\circ + \theta)}$$
(7)

QUESTION 7


7.1	Given: $\cos (A - B) = \cos A \cos B + \sin A \sin B$		
	7.1.1	Use the above identity to deduce that $sin(A+B) = sin A cos B + cos A sin B$.	(3)
	7.1.2	Hence determine the general solution of the equation	
		$\sin(2x+50^\circ)-\sin 15^\circ\cos 48^\circ=\sin 48^\circ\cos 15^\circ.$	(4)
7.2	Given:	$\frac{4\sin x \cos x}{2\sin^2 x - 1}$	
	7.2.1	Simplify $\frac{4\sin x \cos x}{2\sin^2 x - 1}$ to a single trigonometric ratio.	(3)
	7.2.2	For which value(s) of x in the interval $-90^{\circ} < x < 90^{\circ}$ will the above expression be undefined?	(3)
	7.2.3	Without using a calculator, determine the value of $\frac{4\sin 15^\circ \cos 15^\circ}{2\sin^2 15^\circ - 1}$.	(2)
		NOR	[15]
Copyrig	ht Reserve	ed SA EXAM Please Tur PAPERS Please Tur	rn Over

QUESTION 8

In the diagram below, the graphs of $f(x) = \cos x + m$ and $g(x) = \sin(x+n)$ are drawn on the same set of axes for $x \in [-240^\circ; 240^\circ]$.

A is an *x*-intercept of f and has coordinates (60°; 0).

B is a turning point of g and has coordinates $(60^\circ; 1)$.

8.1	Determine the values of m and n .	(2)
8.2	Write down the amplitude of <i>f</i> .	(1)
8.3	If $h(x) = g(2x)$, write down the period of <i>h</i> .	(1)
8.4	For which values of x will $f(x).g(x) \le 0$ in the interval $x \in [0^\circ; 240^\circ]$?	(2)
8.5	Describe the transformations that the graph of g has to undergo to form the graph of p ,	
	where $p(x) = -\cos x$.	(2)
		[8]

TOTAL: 100 marks

Copyright Reserved

INFORMATION SHEET: MATHEMATICS

$x = \frac{-b \pm \sqrt{b^2 - 4}}{2a}$	ac			
	A = P(1-ni)	$A = P(1-i)^n$	A =	$P(1+i)^n$
$T_n = a + (n-1)d$	$S_n = \frac{n}{2} [2a$	+(n-1)d]		
$T_n = ar^{n-1}$	$S_n = \frac{a(r^n - r)}{r - r}$	$(-1)/1$; $r \neq 1$	$S_{\infty}=\frac{a}{1-r};$	-1 < r < 1
$F = \frac{x\left[(1+i)^n - 1\right]}{i}$	<i>P</i> =	$=\frac{x\left[1-(1+i)^{-n}\right]}{i}$		
$f'(x) = \lim_{h \to 0} \frac{f(x \cdot x)}{x}$	$\frac{(h+h)-f(x)}{h}$			
$d=\sqrt{\left(x_2-x_1\right)^2}$	$+(y_2-y_1)^2$	$\mathbf{M}\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$	$\left(\frac{y_2}{2}\right)$	
y = mx + c	$y-y_1=m$	$(x-x_1)$ m	$=\frac{y_2 - y_1}{x_2 - x_1}$	$m = \tan \theta$
$(x-a)^2+(y-b)$	$r^{2} = r^{2}$			
In $\triangle ABC$:	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{a}{\sin B}$			
	$a^2 = b^2 + c^2 - 2bc$.cos A		
	area $\triangle ABC = \frac{1}{2}ab$.sin C		
$\sin(\alpha+\beta)=\sin\beta$	$\alpha \cos \beta + \cos \alpha \sin \beta$	$\sin(\alpha - \beta)$	$=\sin \alpha \cos \beta - \alpha$	$\cos \alpha \sin \beta$
$\cos(\alpha + \beta) = \cos(\alpha + \beta)$	$\alpha \cos \beta - \sin \alpha \sin \beta$	$\cos(\alpha - \beta)$	$\beta = \cos \alpha \cos \beta + \beta$	$\sin \alpha \sin \beta$
$\int \cos^2 \alpha$	$-\sin^2 \alpha$			
$\cos 2\alpha = \begin{cases} \cos^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha \end{cases}$	$n^2 \alpha$	$\sin 2\alpha = 2$	$2\sin \alpha . \sin \alpha$	
$2\cos^2 a$	$\alpha - 1$			
$\overline{x} = \frac{\sum x}{n}$		$\sigma^2 = \frac{\sum_{i=1}^{n} (i)}{2}$	$\frac{x_i - \overline{x}}{n}^2$	

P(A or B) = P(A) + P(B) - P(A and B)

 $b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^{2}}$ SA EXAM

PAPERS

$$\overline{x} = \frac{\sum x}{n}$$
$$P(A) = \frac{n(A)}{n(S)}$$

 $\hat{y} = a + bx$

Copyright Reserved