

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS (MATHS)

MARKING GUIDELINES

COMMON TEST

MARCH 2024

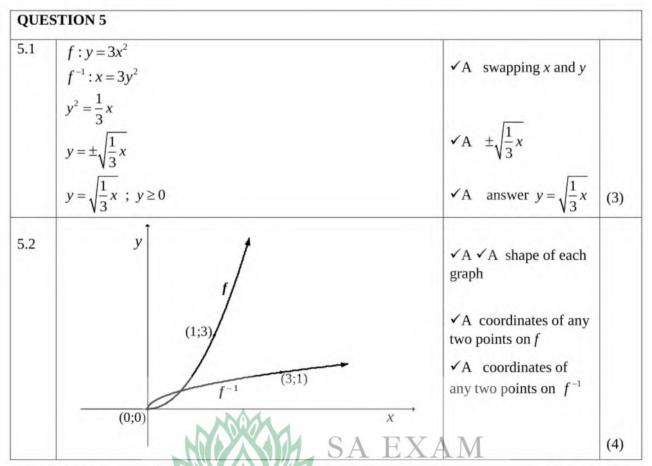
MARKS: 100

These marking guidelines consist of 10 pages.

QUES	STION 1		
1.1.1	8; 15; 22;	✓A substitution ✓CA answer	(2)
1.1.2	$a=8; d=7; n=36$ $S_{n} = \frac{n}{2} [2a + (n-1)d]$ $S_{36} = \frac{36}{2} [2(8) + (36-1)(7)]$ $S_{36} = 4698$ OR $S_{n} = \frac{n}{2} (a+l)$	✓CA substitution ✓CA answer	
	$S_{36} = \frac{36}{2} (8 + 253)$ $= 4698$	✓CA substitution ✓CA answer	(2)
1.1.3	$T_{n} = a + (n-1)d$ $T_{72} = 8 + (72-1)(7) = 505$ $T_{72-m} = 8 + (72-m-1)(7)$ $T_{72-m} + T_{12} = 786$ $505 + 8 + 497 - 72 - m = 786$ $-7m = -224$ $m = 32$	✓CA value of T_{72} ✓CA Substitution in T_{72-m} ✓CA Simplification ✓CA value of m	(4)
1.2.1	$81 \times \frac{2}{3} = 54cm$ The post imposis 54cm	«(A anguar	(1)
1.2.2	The next jump is 54cm 81; 54; 36; $a = 81; r = \frac{2}{3}; n = 9$ $T_n = ar^{n-1}$ $T_9 = 81\left(\frac{2}{3}\right)^8$	✓A answer ✓A substitution	
	$=\frac{256}{81}=3,16cm$	✓ A answer	(2)

	230 through substitution of a value of n that is \geq 8 in the S_n formula.	✓CA value of S _n ✓CA conclusion	(3) [14]
	Showing that he can reach a distance >	✓A substitution	
	OR	OR	
	Yes he will be able to catch the insect	✓CA conclusion	
	= 243cm 243 cm > 230cm	✓CA value of S_{∞}	
	$S_{r} = \frac{81}{1 - \frac{2}{3}}$	✓A substitution	
1.2.3	$S_{\lambda} = \frac{a}{1-r}$		

QUES	TION 2			
2.1.1	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		✓A value of <i>a</i>	
	$-16 = 3(2) + b$ $b = -22$ $16 = 2 - 22 + c$ $c = 36$ $T_n = 2n^2 - 22n + 36$		✓CA value of <i>b</i> ✓CA value of <i>c</i> ✓CA answer	(4)
2.1.2	1, 0= (11 1)	Answer only:	✓A substitution	
	$T_n = -4n + 36$	Full marks	✓CA answer	(2)
2.1.3	$2n^{2}-22n+36 = -4n+36$ $2n^{2}-18n = 0$ $n - 9n = 0$ $n(n - 9) = 0$ $n = 0 \text{ or } n = 9$ $n = 9 \text{ only}$		✓CA equating ✓CA factors ✓CA $n=9$ only	
	\therefore T ₁₇ and T ₁₈ are the terms	M SA I	CA answer	(4)


2.2	$T_1 = -54$; $T_2 = 162$; $T_3 = -486$		
	a = -54; $r = -3$; $n = 7$	\checkmark A $a = -54$	
	$S_n = \frac{a(r^n - 1)}{r - 1}$	✓A r=-3	
	$S_7 = \frac{-54((-3)^7 - 1)}{3 \cdot 1}$ Answer only:	✓CA substitution	
	= -29538 Full marks	✓CA answer	(4)
			[14]

QUE	STION 3		
3.1	x = -2	✓A answer	(2)
	y=1	✓A answer	(2)
3.2	$0 = \frac{3}{x+2} + 1$ $-1 = \frac{3}{x+2}$	✓ A substituting $y = 0$	
	-x-2=3		
	x = -5 A(-5; 0)	✓ A value of <i>x</i>	(2)
3.3	$y = \frac{3}{0+2} + 1$	✓ A substituting $x = 0$	
	$y = \frac{5}{2}$ Answer only:	\checkmark A value of y	
	$B\left(0; \frac{5}{2}\right)$ Answer only: Full marks		(2)
3.4	$g(x) = \frac{3}{-x+2} + 1 + 2$	✓A -x	
	$g(x) = \frac{-3}{x-2} + 3$	✓A answer	
	OR Answer only:	OR	
	$g(x) = \frac{3}{-x+2} + 3$ Full marks	✓A✓A answer	(2)
3.5	y = x + c $3 = 2 + c subst(2;3)$	✓A substituting (2;3)	
	c=1	✓CA answer	(2)
			[10]

QUE	ESTION 4		
4.1	y = mx + 5 B(0; 5): y-intercept OB = 5 units OA = OB AB = 5 - 2 = 3 units A(0; 3)	✓A 5-2	
	$f(x) = -x^2 + 2x + 3$ p = 3		(1)
4.2	$x = \frac{-b}{2a}$ $x = \frac{-2}{2(-1)}$ $= 1$ $y = -(1)^{2} + 2(1) + 3 = 4$ $F(1; 4)$ OR $f(x) = -\left[x^{2} - 2x - 3\right]$ $f(x) = -\left[(x^{2} - 2x + 1) - 3 - 1\right]$ $f(x) = -\left[(x - 1)^{2} - 4\right]$ $f(x) = -(x - 1)^{2} + 4$ $F(1; 4)$	✓A substitution ✓CA value of <i>x</i> ✓CA value of <i>y</i> OR ✓A completing the square ✓CA value of <i>x</i> ✓CA value of <i>y</i>	(3)
4.3	$f(x) = -x^{2} + 2x + 3$ $0 = x^{2} - 2x - 3$ $0 = (x - 3)(x + 1)$ $x = 3 \text{ or } -1$ $C(3; 0)$	✓A equating to 0 ✓A factors ✓CA answer	(3)

4.4	C(3;0)			
	CD = 7 units			
	OD = 7 + 3 = 10 units		✓CA OD = 10 units	
	D(10;0)			
	$y = mx + 5 \qquad \qquad \mathbf{or}$	$m = \frac{y_2 - y_1}{x_2 - x_1}$	✓CA substituting D(10; 0) in $y = mx + 5$	
	0=10m+5	$=\frac{0-10}{5-0}$	OR substituting in gradient formula	
	$m=-\frac{1}{2}$	$=-\frac{1}{2}$	✓CA value of <i>m</i>	
	$y = -\frac{1}{2}x + 5$ or	$\hat{CDE} = 180^{\circ} - \angle \text{ of incl of DE}$		
	At E: $x=3$	= 26,57°	344 317 3 7 7	
	$\therefore y = -\frac{1}{2}(3) + 5 = \frac{7}{2}$	$CE = CD \times \tan 26,57^{\circ}$	CA substituting $x=3$ in $y=-\frac{1}{2}x+5$ OR	
	$\therefore CE = \frac{7}{2} - 0 = \frac{7}{2} \text{ units}$	$= 7 \times \tan 26,57^{\circ} = \frac{7}{2}$	✓ CA CE = CD × tan 26,57° ✓ CA answer	(5)
				[12

$3x^2 = \sqrt{\frac{1}{3}}x$	✓CA equating	
$\left(3x^2\right)^2 = \left(\sqrt{\frac{1}{3}x}\right)^2$	✓CA squaring both sides	
$9x^4 = \frac{1}{3}x$		
$27x^4 - x = 0$ $x(27x^3 - 1) = 0$		
$x(3x-1)(9x^2+3x+1)=0$ or $x=0$ or $27x^3=1$		
$x = 0$ or $x = \frac{1}{3}$ $x = 0$ $x = \frac{1}{3}$	\checkmark A $x=0$	
OR	Date of the National Control of the	
	OR	
$x = \sqrt{\frac{1}{3}}x$	✓CA equating	
$x^2 = \left(\sqrt{\frac{1}{3}x}\right)^2$	✓CA squaring both sides	
$x^2 = \frac{1}{3}x$		
$3x^2 = x$ $3x^2 - x = 0$		
x(3x-1)=0		
$x = 0 \text{ or } x = \frac{1}{3}$	\checkmark A $x=0$	
	\checkmark CA $x = \frac{1}{3}$	
OR	OR	
$3x^2 = x$	✓A equating	
$3x^2 - x = 0$		
x(3x-1)=0	✓A factors	
$x = 0 \text{ or } x = \frac{1}{3}$	\checkmark A $x=0$	(4
9	\checkmark CA $x = \frac{1}{3}$	
		[1

QUESTION 6

6.1.1	<u> </u>		
	$r^2 = (-4)^2 + (-3)^2 = 25$	➤ ✓ A sketch	
		\checkmark A $r = 5$	
	$\therefore r = 5$	V A r = 5	
	$\therefore \sin x = \frac{-3}{5}$	✓ CA answer	(3)
6.1.2	$2 - \sin 2x$ $= 2 - 2 \sin x \cos x$	✓ A expansion	
	$= 2 - 2\left(\frac{-3}{5}\right)\left(\frac{-4}{5}\right)$	✓ CA substitution	
	$= 2 - \frac{24}{25}$		
	$=\frac{26}{25}$	✓ CA answer	(3)
6.1.3	$cos^{2}(90^{\circ}-x)-1$		(-)
	$=\sin^2 x - 1$	\checkmark A $\sin^2 x$	
	$=\left(\frac{-3}{5}\right)^2-1$	✓ CA substitution	
	$=\frac{9}{25}-1$		
	$=\frac{-16}{25}$	✓ CA answer	(3)
6.2	$-1 + \cos(180^{\circ} - \theta) \cdot \sin(\theta - 90^{\circ})$		
0.2	$\cos(-\theta) \cdot \sin(90^\circ + \theta) \cdot \tan^2(540^\circ + \theta)$	In numerator:	
	$= \frac{-1 + (-\cos\theta) \cdot -\cos\theta}{\cos\theta \cdot \cos\theta \cdot \tan^2(540^\circ - 360^\circ + \theta)}$	✓ $A - \cos \theta$, ✓ $A - \cos \theta$ In denominator:	
	$\cos^2\theta - 1$	$\checkmark A \cos \theta, \checkmark A \cos \theta$	
	$= \frac{1}{\cos\theta \cdot \tan^2(180^\circ + \theta)}$		
	$= \frac{-(1-\cos^2\theta)}{(1-\cos^2\theta)}$	\checkmark A tan ² θ	
	$\cos^2 \theta \cdot \tan^2 \theta$ $-\sin^2 \theta$		
	$= \frac{-\sin^2 \theta}{\cos^2 \theta} \cdot \frac{\sin^2 \theta}{\cos^2 \theta}$	$\checkmark \text{CA} - \sin^2 \theta$	
	= -1	✓ CA answer after	
	1	simplification	(7)
			[16]

QUESTION 7

7.1.1	$\sin(A+B)$		
	$=\cos[90^{\circ}-(A+B)]$	✓ A co-ratio	
	$=\cos(90^{\circ}-A-B)$		
	$=\cos\left[\left(90^{\circ}-A\right)-B\right]$	✓ A re-arrangement	
	$= \cos(90^{\circ} - A) \cdot \cos B + \sin(90^{\circ} - A) \cdot \sin B$	✓ A expansion	
	$= \sin A.\cos B + \cos A.\sin B$		(3)
7.1.2	$\sin(2x+50^{\circ}) - \sin 15^{\circ} \cos 48^{\circ} = \sin 48^{\circ} \cos 15^{\circ}$		
	$\sin(2x+50^{\circ}) = \sin 48^{\circ} \cos 15^{\circ} + \sin 15^{\circ} \cos 48^{\circ}$	√ A using sampound	
	$\sin(2x+50^\circ) = \sin 63^\circ$	✓ A using compound angle identity	
	$2x + 50^{\circ} = 63^{\circ} + k.360^{\circ}$ OR $2x + 50^{\circ} = 180^{\circ} - 63^{\circ} + k.360^{\circ}$	✓ A both solutions	
	$2x = 13^{\circ} + k.360^{\circ}$ $2x = 67^{\circ} + k.360^{\circ}$	\checkmark CA $x = 6,5^{\circ} + k.180^{\circ}$	
	$x = 6,5^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$ $x = 33,5^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$	✓CA $x = 33,5^{\circ} + k.180^{\circ}$	
		$k \in \mathbb{Z}$: penalty of 1 if not written at least once	(4)
7.2.1	$4\sin x \cos x$		
	$2\sin^2 x - 1$		
	$= \frac{2\left(2\sin x \cos x\right)}{-\left(1-2\sin^2 x\right)}$		
	$=\frac{2\sin 2x}{\cos x}$	✓ A 2 sin 2x	
	$-\cos 2x$	\checkmark A – cos x	(0)
7.2.2	$= -2 \tan 2x$ $2 \sin^2 x - 1 = 0$	✓ CA answer	(3)
1.2.2		(1)	
	$\sin x = \pm \frac{1}{\sqrt{2}}$	\checkmark A $\pm \frac{1}{\sqrt{2}}$	
7.2.3	$x = -45^{\circ} \text{ or } x = 45^{\circ}$	✓ CA –45°; CA ✓ 45°	(3)
7.2.5	$\frac{4\sin 15^{\circ} \cos 15^{\circ}}{2\sin^2 15^{\circ} - 1}$		
	$= -2 \tan 30^{\circ}$	✓ A – 2 tan 30°	
	$=-2\left(\frac{1}{\sqrt{3}}\right)$		
	$=\frac{-2}{\sqrt{3}} \text{ or } \frac{-2\sqrt{3}}{3}$	✓ A answer	(2)
	γο ο		[1
			5]

March 2024 Common Test

QUESTION 8

8.1	$m=-\frac{1}{2}$	\checkmark A $m=-\frac{1}{2}$	
	n = 30°	✓ A n = 30°	(2)
8.2	amplitude of $f = 1$	✓ A answer	(1)
8.3	period of $h = 180^{\circ}$	✓ A answer	(1)
8.4	$60^{\circ} \le x \le 150^{\circ}$	✓ ✓ A A answer	(2)
8.5	translation of 60° to the left; and reflection in the <i>x</i> -axis	✓ A translation of 60° to the left ✓ A reflection in the <i>x</i> -axis	(2)
			[8]

GRAND TOTAL: 100

