

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

PREPARATORY EXAMINATION 2023

11102

TECHNICAL SCIENCES

(PAPER 2)

TIME: 11/2 hours

MARKS: 75

10 pages and 4 data sheets

TECHNICAL SCIENCES: Paper 2

TECHNICAL SCIENCES		2
(PAPER 2)	11102/23	

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of SEVEN questions. Answer ALL the questions in the ANSWER BOOK.
- 2. Start EACH question on a NEW page in your ANSWER BOOK.
- 3. Number your answers correctly according to the numbering system used in this question paper.
- 4. Leave ONE line between sub-questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 5. You may use a non-programmable scientific calculator.
- 6. You are advised to use the attached DATA SHEETS.
- 7. Show ALL formulae and substitutions in ALL calculations.
- 8. Round-off your FINAL numerical answers to a minimum of TWO decimal places.
- 9. Give brief motivations, discussions, et cetera where required.
- 10. Write neatly and legibly.

TECHNICAL SCIENCES		2
(PAPER 2)	11102/23	3

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the correct answer and write only the letter (A - D) next to the question numbers (1.1 to 1.6) in the ANSWER BOOK, e.g. 1.7 D.

1.1 Which of the following compounds is a tertiary alcohol?

- 1.2 The general formula, C_nH_{2n}, describes the following homologous series:
 - A Alkane
 - B Alkene
 - C Alkyne
 - D Haloalkane (2)
- 1.3 Dipole-dipole forces increase with the increase of polarity of functional groups:
 - A Alkanes < aldehydes < esters < ketones < alcohols < carboxylic acid
 - B Alkanes < esters < aldehydes < alcohols < ketones < carboxylic acid
 - C Alkanes < esters < aldehydes < ketones < alcohols < carboxylic acid
 - D Alkanes < aldehydes < ketones < alcohols < carboxylic acid < esters (2)
- 1.4 Which of the following types of intermolecular forces is the strongest?
 - A London forces
 - B Dipole-dipole forces
 - C Van der Waals forces
 - D Hydrogen bonds (2)

TECHNICAL SCIENCES		4
(PAPER 2)	11102/23	4

- 1.5 Which of the following statements regarding the anode of a standard galvanic cell in operation is CORRECT?
 - A The anode accepts electrons.
 - B The mass of the anode increases.
 - C The concentration of the electrolyte in the half-cell containing the anode increases.
 - D The anode is the positive terminal of the cell. (2)
- 1.6 A learner wants to electroplate a copper ring with nickel. He uses the experimental setup shown in the simplified diagram below.

Which of the following is CORRECT?

	ANODE	CATHODE	ELECTROLYTE
Α	Copper ring	Nickel rod	CuSO ₄
В	Nickel rod	Copper ring	CuSO ₄
С	Copper ring	Nickel rod	NiSO ₄
D	Nickel rod	Copper ring	NiSO ₄

(2) **[12]**

TECHNICAL SCIENCES		_
(PAPER 2)	11102/23	5

QUESTION 2 (Start on a new page.)

Study the following table of organic molecules as represented by letters **A** to **F** below and answer the following questions.

A	H H H H H H H	В	H
С	Ethyl propanoate	D	3-methylbutan-2-one
E	H H H– C = C –H	F	H H H H-C - C - C-H H H-C-H H H

- 2.1 Define a homologous series. (2)
- 2.2 Write down the letter(s) that represent(s) the compound that is/are:

2.3 Write down the following:

TECHNICAL SCIENCES		c
(PAPER 2)	11102/23	В

QUESTION 3 (Start on a new page.)

Esters are used for its pleasant fruity odours. It is also used in paint and coating adhesives, lubricants, intermediates, processing aids and as a solvent in paint, glue, nail polish and graffiti removers.

Use the table of esters below to answer the following questions.

	Ester	Molar Mass (g.mol ⁻¹)	Melting point (°C)	Boiling point (°C)
Α	HCOOCH ₃	60	-99	32
В	HCOOCH ₂ CH ₃	74	-98	57
С	HCOOCH ₂ CH ₂ CH ₃	88	-88	80

3.1	Define the term boiling point.	(2)
3.2	What is the difference between the esters' molecular structures above?	(2)
3.3	Explain why compound ${\bf C}$ has a higher boiling point than compound ${\bf A}$ in terms of the type of intermolecular forces, strength of these intermolecular forces and the energy needed.	(3)
3.4	Which compound would have the highest vapour pressure?	(1)
3.5	Explain your answer to QUESTION 3.4 above.	(3) [11]

TECHNICAL SCIENCES		7
(PAPER 2)	11102/23	'

QUESTION 4 (Start on a new page.)

The flow diagram below shows the interconversion between alcohols, alkenes and haloalkanes. The letters **A** – **C** represent addition or substitution.

- 4.1 What type of reaction is represented by reaction **B**? Write down only ADDITION or SUBSTITUTION. (1)
- 4.2 Write down the name of the inorganic substance needed for this reaction to form an alcohol. (1)
- 4.3 Use structural formula and write down the major product of compound **B**. (2)
- 4.4 Identify the type of reaction that is represented by reaction **A** if HBr is added to ethene. Write down the full reaction name. (1)
- 4.5 Give the IUPAC name of compound **A.** (2)

Hydrogenation is a chemical reaction where hydrogen is added to an alkene to form ethane. Ethane is considered a more efficient fuel source for fast growing and developing countries.

4.6 Write down a balanced chemical equation where ethane is burned in excess oxygen. Use molecular formula.

(3) **[10]**

TECHNICAL SCIENCES		0
(PAPER 2)	11102/23	0

QUESTION 5 (Start on a new page.)

Silicon is the most common semiconductor material used in solar cells, representing approximately 95% of the modules sold today. It is also the second most abundant material on earth (after oxygen) and the most common semiconductor used in computer chips.

5.1	Define intrinsic semiconductor.	(2)
5.2	Write down the name of the type of material of which an intrinsic semiconductor is made and that is found between the metals and non-metals on the periodic table.	(1)
5.3	Draw the symbol of a p-n type diode.	(2) [5]

TECHNICAL SCIENCES		0
(PAPER 2)	11102/23	9

QUESTION 6 (Start on a new page.)

Two different cells, $\bf A$ and $\bf B$ are shown in the diagram below. Both Cell $\bf A$ and Cell $\bf B$ contain a concentrated solution of copper(II) chloride (CuC ℓ_2). In Cell $\bf A$, $\bf P$ is a copper electrode and $\bf Q$ is a carbon electrode. In cell $\bf B$, both $\bf R$ and $\bf S$ are identical carbon electrodes.

6.1	Are the above electrochemical cells electrolytic or galvanic?	(1)
6.2	Give a reason for your answer to QUESTION 6.1.	(1)
6.3	Write down the name of the electrolytic process taking place at Cell A.	(1)
6.4	Give a reason for your answer to QUESTION 6.3.	(1)
6.5	Write down ONE importance of the electrolytic process mentioned in QUESTION 6.3.	(1)
6.6	Write down the NAME or SYMBOL of an anion in the electrolyte in Cell B .	(1)
6.7	Write down the chemical equation for the half-reaction taking place at electrode ${\bf Q}$.	(2)
6.8	Write down the NAME or SYMBOL of the product formed at electrode R .	(1)
6.9	What happens to the concentration of the electrolyte in Cell B when the cell is in operation? Write down INCREASES, DECREASES, or REMAINS THE SAME. Give a reason for your answer.	(3) [12]

TECHNICAL SCIENCES		40
(PAPER 2)	11102/23	10

QUESTION 7 (Start on a new page.)

7.1

Define galvanic cell.

Grade 12 learners performed an experiment to determine the electrode potential of a zinc-copper cell. They assembled the apparatus as shown in the diagram below. The experiment was performed at an initial concentration of 1 mol·dm⁻³ and a temperature of 25 °C.

7.2 Give a reason why the standard condition of the pressure of 101,3 kPa is not applicable to the zinc-copper cell. (1)
7.3 Use a calculation to show that this electrochemical cell is spontaneous. (4)
7.4 Write down the overall (net) cell reaction for this cell. (3)
7.5 The voltmeter is now replaced with a 2V bulb. Will the bulb glow to its maximum

brightness? Answer YES or NO and give a reason for your answer.

TOTAL: 75

(2)

(2) **[12]**

TECHNICAL SCIENCES		44
(Paper 2)	11102/23	77

DATA FOR TECHNICAL SCIENCES GRADE 12/ GEGEWENS VIR TEGNIESE WETENSKAPPE GRAAD 12 PAPER/VRAESTEL 2

TABLE/TABEL 1

PHYSICAL CONSTANTS/FISIESE KONSTANTES										
CONSTANT/KONSTANTE	SYMBOL/SIMBOOL	VALUE/WAARDE								
Planck's constant Planck se konstante	h	6,63 x 10 ⁻³⁴ J.s								
Speed of light Spoed van lig	С	3 x 10 ⁸ m.s ⁻¹								

TABLE/TABEL 2

WAVES, SOUND AND LIGHT/GOLWE, KLANK EN LIG										
Speed/Spoed	$c = f \lambda$									
Energy/Energie	E = hf									
	or/of									
	$E = \frac{hc}{\lambda}$									

TABLE/TABEL 3

ELECTROCHEMIS	STRY/ELEKTROCHEMIE	
Emf/ <i>Emk</i>	$E^{\theta}_{\mathrm{cell}} = E^{\theta}_{\mathrm{cathode}} - E^{\theta}_{\mathrm{anode}}$	$I = E_{sel}^{\theta} = E_{katode}^{\theta} - E_{anode}^{\theta}$
	or/of	
	$E^{\theta}_{cell} \;=\; E^{\theta}_{reduction} \;\;-\; E^{\theta}_{oxidation}$	$I = E_{sel}^{\theta} = E_{reduksie}^{\theta} - E_{oksidasie}^{\theta}$
	or/of	
	$E_{\text{cell}}^{\theta} = E_{\text{oxidising agent}}^{\theta} - E_{\text{reducing agent}}^{\theta}$	/ $E_{\text{sel}}^{\theta} = E_{\text{oksideermiddel}}^{\theta} - E_{\text{reduseermiddel}}^{\theta}$

TECHNICAL SCIENCES (PAPER 2) 11102/23

12

TABLE 4A: STANDARD REDUCTION POTENTIALS/ TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/	Halfı	reaksies	Ε ^θ (V)				
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87				
Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+ 1,81				
$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	2H ₂ O	+1,77				
MnO ₄ + 8H+ + 5e-	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+ 1,51				
$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cℓ ⁻	+ 1,36				
Cr ₂ O ²⁻ ₇ + 14H ⁺ + 6e ⁻	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+ 1,33				
$O_2(g) + 4H^+ + 4e^-$	\rightleftharpoons	2H ₂ O	+ 1,23				
$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+ 1,23				
Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+ 1,20				
$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br	+ 1,07				
$NO_3^- + 4H^+ + 3e^-$	\rightleftharpoons	NO(g) + 2H ₂ O	+ 0,96				
Hg ²⁺ + 2e⁻	\rightleftharpoons	Hg(ℓ)	+ 0,85				
Ag⁺ + e⁻	\rightleftharpoons	Ag	+ 0,80				
$NO_3^- + 2H^+ + e^-$	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80				
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+ 0,77				
O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O_2	+ 0,68				
I ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+ 0,54				
Cu⁺ + e⁻	\rightleftharpoons	Cu	+ 0,52				
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	S + 2H ₂ O	+ 0,45				
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H-	+ 0,40				
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34				
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(g) + 2H_2O$	+ 0,17				
Cu ²⁺ + e ⁻	\rightleftharpoons	Cu⁺	+ 0,16				
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+ 0,15				
S + 2H ⁺ + 2e ⁻	\rightleftharpoons	H ₂ S(g)	+ 0,14				
2H⁺ + 2e⁻		H₂(g)	0,00				
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	- 0,06				
Pb ²⁺ + 2e ⁻		Pb	- 0,13				
Sn ²⁺ + 2e ⁻		Sn	- 0,14				
Ni ²⁺ + 2e ⁻		Ni	- 0,27				
Co ²⁺ + 2e ⁻		Co	- 0,28				
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40				
Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	- 0,41				
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44				
Cr ³⁺ + 3e ⁻	-	Cr Z	- 0,74				
Zn ²⁺ + 2e ⁻	_	Zn	- 0,76				
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83				
Cr ²⁺ + 2e ⁻	,	Cr Ma	- 0,91				
$Mn^{2+} + 2e^{-}$	<i>→</i>	Mn	- 1,18				
$A\ell^{3+} + 3e^{-}$	<i>, , , , , , , , , ,</i>	Al Ma	- 1,66				
Mg ²⁺ + 2e ⁻	=	Mg No	- 2,36				
Na ⁺ + e ⁻	=	Na Co	- 2,71				
Ca ²⁺ + 2e ⁻ Sr ²⁺ + 2e ⁻	=	Ca Sr	- 2,87				
Sr ²⁺ + 2e ⁻ Ba ²⁺ + 2e ⁻	 	Sr	- 2,89				
Cs ⁺ + e ⁻	 	Ba Cs	- 2,90 - 2,92				
Cs + e K⁺ + e⁻	7	K	- 2,92 - 2,93				
Li ⁺ + e ⁻	7	Li	- 2,93 - 3.05				
	$\overline{}$	L-1	- 0.00				

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

TECHNICAL SCIENCES (PAPER 2) 11102/23

TABLE 4B: STANDARD REDUCTION POTENTIALS/ TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/	$E^{\theta}(V)$									
Li⁺ + e⁻	\rightleftharpoons	Li	- 3,05							
K⁺ + e⁻	\rightleftharpoons	K	-2,93							
Cs+ + e-	\rightleftharpoons	Cs	- 2,92							
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	-2,90							
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	– 2,89							
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	− 2,87							
Na⁺ + e⁻	\rightleftharpoons	Na	– 2,71							
$Mg^{2+} + 2e^{-}$	\rightleftharpoons	Mg	- 2,36							
$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Αl	– 1,66							
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	– 1,18							
Cr ²⁺ + 2e ⁻	\rightleftharpoons	Cr	- 0,91							
2H ₂ O + 2e ⁻	\rightleftharpoons	H ₂ (g) + 2OH ⁻	- 0,83							
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76							
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	- 0,74							
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44							
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41							
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40							
Co ²⁺ + 2e ⁻	,	Co	- 0,28							
Ni ²⁺ + 2e ⁻	<i>,</i>	Ni Cn	- 0,27							
Sn ²⁺ + 2e ⁻ Pb ²⁺ + 2e ⁻	<i>–</i>	Sn	- 0,14							
Fe ³⁺ + 3e ⁻	→	Pb	- 0,13							
2H ⁺ + 2e ⁻	=	Fe	- 0,06 0,00							
S + 2H ⁺ + 2e ⁻	‡	H₂(g) H₂S(g)	+ 0,14							
S+2H+2e Sn ⁴⁺ + 2e ⁻	+	Sn ²⁺	+ 0,14							
Cu ²⁺ + e ⁻	7	Cu ⁺	+ 0,15							
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	SO ₂ (g) + 2H ₂ O	+ 0,17							
Cu ²⁺ + 2e ⁻	· ⇌	Cu	+ 0,34							
2H ₂ O + O ₂ + 4e ⁻	÷	4OH-	+ 0,40							
SO ₂ + 4H ⁺ + 4e ⁻	÷	S + 2H ₂ O	+ 0,45							
Cu ⁺ + e ⁻	÷	Cu	+ 0,52							
l ₂ + 2e ⁻	\rightleftharpoons	2I ⁻	+ 0,54							
O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O_2	+ 0,68							
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+ 0,77							
$NO_3^- + 2H^+ + e^-$	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80							
Ag⁺ + e⁻	\rightleftharpoons	Ag	+ 0,80							
Hg ²⁺ + 2e⁻	\rightleftharpoons	Hg(ℓ)	+ 0,85							
$NO_3^- + 4H^+ + 3e^-$	\rightleftharpoons	NO(g) + 2H ₂ O	+ 0,96							
$Br_2(\ell) + 2e^-$		2Br	+ 1,07							
Pt ²⁺ + 2 e ⁻	\rightleftharpoons	Pt	+ 1,20							
$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	Mn ²⁺ + 2H ₂ O	+ 1,23							
$O_2(g) + 4H^+ + 4e^-$	\rightleftharpoons	2H ₂ O	+ 1,23							
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+ 1,33							
$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cℓ ⁻	+ 1,36							
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+ 1,51							
H ₂ O ₂ + 2H ⁺ +2 e ⁻	\rightleftharpoons	2H ₂ O	+1,77							
Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+ 1,81							
F₂(g) + 2e⁻	\rightleftharpoons	2F-	+ 2,87							

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

)	A EX	4111 h	Pap)er:	5		2 F)ap)ei	V	Vd.	5 (10	VVI	11()d	ue	a	(JH	15	at	Xd		βa	ue	15.	
ĺ			18	(VIII)	2	¥ ₹	9	Ne	20	18	Ā	40	36	ネ	84	54	Xe	131	98	몺			71	Ľ	175	103	Ľ	
	41		17	$\widehat{\overline{\mathbb{S}}}$			စ	L	19	17	CG	35,5	35	ğ.	80	53		127	82	, At			20	Υb	173	102	°	
	11102/23		' 0 '	_			8	0't O	9	9	3,0	32	34	Se 2,8	62	25	ع <u>,5</u>	128	84	Po 2,5					၈	_	7	
	111(NTE	16	2				3,5			2,5	.,	(,)	2' ر		4,	۲,2 ا	1		0,S			69	H	169	10	Ø	
		EME	15	\mathbf{S}			7	Z	4	15	<u></u>	31	33	As	75	51	Sb	122		囧	209		89	百	167	100	E	
		NE						3,0	<u> </u>	_	<u>۲٬۲</u>		<u> </u>	ر ه 2°0		_	<u>۴۵</u>	6		<u>وبا</u>	7							
	TECHNICAL SCIENCES (Paper 2)	7. VA	4	\geq			9	2,5 Q			8,1 S		32	8,1 Ge	73	20	8,1	119	82	8,1 P b	207		67	운	165	66	ES	
	CIEN	'ABE	13	<u>=</u>			2			13	Ae			Ga	2	49	<u></u>	115		<u>د</u> ۲	204		99	۵	, ₁₃	86		
	AL S	KE 1	~	€				2'0			۱'2			۱'9			۲'۱	_		8'l	-		9	_	-	6	<u> </u>	
	INIC/ er 2)	ODIE	12										30	Zn	65	48	C	112	80	Hg	201		65	qL	159	26	ਲ	
	TECHNIC (Paper 2)	ERIC												9'≀	ري اي	_	۲'۱ ۵	8	•		7							
	F O	ELEMENTS/TABEL 5: DIE PERIODIEKE TABEL VAN ELEMENTE	7										56	OG (1	63,5	47	e,⁵ Ag	108	62	Au	197		64	gg	157	96	CH	
		EL 5:	10				_	_		s/	æ		28		29	46	Pd	106	28	굽	195		63	Еu	152	92	Am	
		TABI					Symbol/	Simbool		mas	ass			8,1	_		<u>2,2</u>	3	_		7							
		NTS/	တ	er/			-Svr	Sin		omic	omn		27	8,1 Co	29	45	2,2 2	103	11	_	192		62	Sm	150	94	Pu	
		EME	œ	number	ta/		*			re atc	e atc		26	Fe	99	44	Ru		92	Os	190		61	Pm		93	d N	ı
		E			mge	≯ გ	OG 6	63,5	•	Jativ	tiew			8'l			2'2							Δ		<u> </u>	_	
		TABLE 5: THE PERIODIC TABLE OF	7	Atomic	Atoomgetal		1		_	nate re	Benaderde relatiewe atoommassa		25	ı,5 Mn	22	43	ر.9 1,9		22	Re	186		09	P Z	144	92		238
		TAB	9	Œ			Electronegativity/	Elektronegatiwiteit		oxin	adera		24		52	42	_	96	74	>	184		59	Pr	141	91	Ра	
		ODIC		EU	 		lega	egat		Appl	Ben			۱'9			8'I							_	_	0,		
		ERIC	2	KEYISLEUTEL			ctror	tron					23	>	51	41	g	92	73	Ta	181		28	Ce	140	06	드	232
		뽀		궃			Ele	E/e/					7	9'ŀ	∞	0		_	2	<u>_</u>	6							
		5: T	4											; ⊢	48	40	₽ '↓	91		ون 1,6	17							
		BLE												Sc	45	39		89		La	139	89	Ç					
		¥	က											٤٠١	•		۱,2											
			7	≘			4	Be	6	12	Mg	24	20	Ca	40	38	Sr	88	26	Ва	137	88	Ra	526				
				=				ے 1'و			۲ [,] ۲			٥'١			۱'0			6'0	-		6'0					
			~ :	<u> </u>	-	I,	- &	7	7	11	Na	23	19	×	39	37	Rb	86	22	Cs	133	87	F	1				
			• ;)		ı'z		0'L	Ye	X	6'0	12		8'0	А		8'0	A		2'0	•		۷'0					