

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

PREPARATORY EXAMINATION 2023 MARKING GUIDELINES

TECHNICAL SCIENCES (PAPER 2) (11102)

5 pages

11102/23

QUESTION 1

1.1 B $\checkmark\checkmark$ (2)

1.2 B ✓ ✓ (2)

1.3 B $\checkmark \checkmark$ Award 2 mark (2)

1.4 D ✓ ✓ (2)

 $1.5 \quad C \checkmark \checkmark \tag{2}$

1.6 D ✓ ✓ (2) [12]

QUESTION 2

2.1 Homologous series is a series of organic compounds that can be described by the same general formula and where each member differs from the next by a

 CH_2 -group. $\checkmark\checkmark$ (2)

2.2 2.2.1 $E\checkmark$ (1)

2.2.2 C ✓ (1)

2.2.3 D ✓ (1)

2.2.4 A & F $\checkmark \checkmark$ or nothing (2)

2.3 2.3.1

Ester ✓

Correct carbon structure ✓

Correct number and positions of H ✓

(3)

2.3.2

Carboxylic acid ✓

Correct carbon structure ✓

Correct number and positions of H ✓

Accept structural formula (3) [13]

QUESTION 3

3.1 Boiling point is the temperature at which the vapour pressure equals atmospheric pressure. ✓✓ (The stronger the intermolecular forces, the higher the boiling point) (2)

3.2 Compound C has a longer carbon chain than compound B ✓ and compound B has a longer carbon chain than compound A. ✓

OR

Different in carbon chain

OR

Chain length increase frm A to C

(2)

3.3 Both compounds have (London)- and dipole-dipole forces, ✓ but compound C has a longer carbon chain than compound A, which means compound C has stronger London forces, ✓ more energy is needed to overcome these intermolecular forces. ✓

(3)

 $3.4 \quad A \checkmark$ (1)

3.5 Compound A has the weakest intermolecular forces because it has the shortest carbon chain, ✓ less energy is needed to overcome these intermolecular forces ✓ ✓

OR

Vapour pressure is inversely proportional to boiling point, ✓ the higher Vapour pressure the lower the melting point or boiling point ✓ ✓

(3) **[11]**

QUESTION 4

4.1 Addition ✓ (1)

4.2 H₂O or Water ✓ (1)

4.4 Hydrohalogenation ✓ /Addition (1)

4.5 Bromoethane ✓✓ (2)

 $4.6 2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$

Marking Criteria:

- Reactants ✓
- Products ✓
- Balancing ✓

(3)

			11102/23
			[10]
QUESTION 5			
5.1	An intrinsic semiconductor is a pure semiconductor. ✓✓		(2)
5.2	Metalloids ✓/Semi-metal/ Semi-conductor		(1)
5.3			(2) [5]
QUESTION 6			
6.1	Electrolytic ✓		(1)
6.2	Battery/cell/power source/two electrodes are in the same container ✓		(1)
6.3	Electroplating ✓		(1)
6.4	P (Anode) is made up of an active copper electrode and Q (cathode) is made up of an inactive carbon electrode (unreactive) ✓/ Any relavent response		p (1)
6.5	Decoration/to prevent corrosion/ to increase appearance/Any relavent response		se (1)
6.6	Chloride ion (Cl ⁻)		(1)
6.7	$Cu^{2+} + 2e^- \rightarrow Cu \checkmark \checkmark$		
	Note: Penalise once if charge if left out on copper ion Penaliseer eenmalig indien lading op koperioon uitgelaat is	Marking criteria:/Nasienriglyne: $Cu^{2^+} + 2e^- \rightarrow Cu$ 2/2 $Cu^{2^+} + 2e^- = Cu$ 1/2 $Cu \rightleftharpoons Cu^{2^+} + 2e^-$ 0/2 $Cu^{2^+} + 2e \leftarrow Cu$ 0/2	(2)
6.8	Chlorine gas/C ₁ 2		(1)
6.9	Decreases ✓ Cℓ- is oxidised to Cℓ₂ ✓ and Cu²+ is reduced to Cu. ✓ OR		
	Cl-changes to Cl₂ ✓ and Cu²+ changes to Cu. ✓		(3) [12]

11102/23

QUESTION 7

7.1 An electrochemical cell that converts the chemical energy into electrical energy ✓✓ (2)

7.2 Pressure applies to gases./There is no gas. ✓ (1)

7.3
$$E_{cell}^{\theta} = E_{reduction}^{\theta} - E_{oxidation}^{\theta} \checkmark$$

$$= +0.34 \checkmark - (-0.76) \checkmark$$

$$= +1.1 \ V \checkmark$$

Note:

Accept any other correct formula from the data sheet.

Any other formula using unconventional abbreviations, e.g., $E_{cell} = E_{OA} - E_{RA}$

Followed by correct substitutions: Max. $\frac{2}{3}$

(4)

7.4
$$Zn \rightarrow Zn^{2+} + 2e^{-}$$

(3)

7.5 No, ✓ emf of the bulb is greater than emf of the cell. ✓

OR

Reaction rate does not provide enough current/ energy✓ (2) [12]

TOTAL:

75

