

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

PREPARATORY EXAMINATION 2023

10842

PHYSICAL SCIENCES: CHEMISTRY

(PAPER 2)

TIME: 3 hours

MARKS: 150

PHYSICAL SCIENCES: Paper 2

10842E

19 pages + 4 data sheets

PHYSICAL SCIENCES: CHEMISTRY	
(PAPER 2) 10842/23	

INSTRUCTIONS AND INFORMATION

- 1. Write your name in the appropriate space on the ANSWER BOOK.
- 2. This question paper consists of NINE questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question (e.g. QUESTION 2 and QUESTION 3) on a NEW page.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line open between subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round-off your FINAL numerical answers to a minimum of TWO decimal places.
- 11. Give brief motivations, discussions, et cetera where required.
- 12 Write neatly and legibly.

PHYSICAL SCIENCES: CHEMISTRY		2
(PAPER 2)	10842/23	3

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are given as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A - D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, e.g. 1.11 E.

1.1	The EMPIRICAL	formula of	hexanoic	acid is:
-----	---------------	------------	----------	----------

- A $C_3H_6O_2$
- B C₆H₆O₂
- C C₆H₁₂O₂
- D C₃H₆O (2)
- 1.2 Which intermolecular forces are present between molecules of C₇H₁₅CHO?
 - A Only dipole-dipole forces
 - B Dipole-dipole forces, dispersion (London) forces and hydrogen bonding forces
 - C Dispersion (London) forces and hydrogen bonding forces
 - D Dipole-dipole forces and dispersion (London) forces (2)

PHYSICAL SCIENCES: CHEMISTRY		4
(PAPER 2)	10842/23	4

1.3 The structures of four organic compounds are shown below.

COMPOUND 1	COMPOUND 2
н ₃ с—с́′ он	H ₂ C==CH ₂
COMPOUND 3	COMPOUND 4
H ₃ C—CH—CH ₂	H ₃ C—CH ₂ —CH ₃

Which of these compounds will decolourise bromine water FAST?

- A 1 and 2
- B 2 and 3
- C 3 and 4

- 1.4 Which of the following statements best explains the role of a catalyst?
 - A It lowers the activated complex.
 - B It increases the concentration of the reactants and therefore increases the rate of the reaction.
 - C It provides an alternative path with lower activation energy for the reaction.
 - D It increases the net activation energy. (2)

PHYSICAL SCIENCES: CHEMISTRY	_
(PAPER 2) 10842/23	5

1.5 The energy distribution curves for a fixed mass of gas at two different temperatures, T1 and T2, are shown below:

Which ONE of the following is the correct interpretation of the curves for the change in temperature from **T1** to **T2**?

	Activation energy	Number of effective collisions
Α	Stays the same	Increased
В	Decreased	Decreased
С	Decreased	Increased
D	Stays the same	Decreased

(2)

1.6 Each of the reactions represented below is at equilibrium in a closed container. In which of these reactions will an INCREASE IN PRESSURE (by decreasing the volume) favour the formation of products?

A
$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

B
$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

C
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

D
$$NO_2(g) + CO(g) \rightleftharpoons NO(g) + CO_2(g)$$
 (2)

PHYSICAL SCIENCES: CHEMISTRY		c
(PAPER 2)	10842/23	0

1.7 Consider beakers **A** and **B** as illustrated below.

20 cm³ of the NaOH(aq) solution in beaker **A** is added to the NaOH(aq) solution in beaker **B**. Which of the following represents the correct calculation for the new concentration of Na⁺(aq) ions in beaker **B**?

B
$$0.015 + 0.05$$

 0.17

D
$$\frac{0,015 + 0,005}{0,15}$$
 (2)

- 1.8 When a galvanic (voltaic) cell delivers current, the purpose of the salt bridge is to ...
 - A allow electrons to move in the cell.
 - B ensure electrical neutrality in the cell.
 - C prevent the two solutions from mixing.
 - D allow electrons to travel from the cathode to the anode. (2)

PHYSICAL SCIE	NCES: CHEMISTRY	7
(PAPER 2)	10842/23	'

Α Ag

В Zn

С Cu

Αł (2) D

Gaseous chlorine (Cl2), used to disinfect the water in public swimming pools, 1.10 reacts with water according to the following balanced equation:

$$C\ell_2 + H_2O \rightleftharpoons HOC\ell + HC\ell$$

The addition of chlorine changes the pH of water in swimming pools.

Which of the following substances must be added to public swimming pools periodically to increase the pH?

Α NH₄C_ℓ

Na₂CO₃ В

С KCl

 H_2SO_4 D (2) [20]

PHYSICAL SCIENCES: CHEMISTRY		
(PAPER 2) 108	42/23 °	

QUESTION 2 (Start on a new page.)

A to **F** in the table below represent six organic compounds.

Α	ÇH ₃	В	
	H_3 C $-$ C H_2 - C - C - C H $_3$		Pentan-3-one
С	Methyl butanoate	D	CH ₃ O H ₃ C—CH—CH ₂ -C OH
	Wotry Butanouto		OH
E	O H₃C—Ć(′	F	CH3(CH2)3CH3
	CH ₂ -CH ₂ -CH ₃		= 1.15(= 1.12)0 = 1.10

- 2.1 Consider the organic compound **A**.
 - 2.1.1 Is it a PRIMARY, SECONDARY or TERTIARY alcohol? Give a reason for the answer. (2)
 - 2.1.2 Write down the IUPAC name for the above-mentioned compound. (2)
 - 2.1.3 The above-mentioned compound undergoes an elimination reaction. Write down the STRUCTURAL FORMULA of the major product that is formed. (2)
- 2.2 Consider the organic compound **B**.
 - 2.2.1 Define the term *functional isomer.* (2)

Write down the:

- 2.2.2 Homologous series to which the above-mentioned compound belongs (1)
- 2.2.3 IUPAC name of its functional isomer (2)
- 2.2.4 Letter that represents its positional isomer (1)
- 2.3 Write down the balanced equation using MOLECULAR FORMULAE for the complete combustion of compound **F.**

(3) **[15]**

PHYSICAL SCIENCES: CHEMISTRY		0
(PAPER 2)	10842/23	9

QUESTION 3 (Start on a new page.)

Three structural isomers with molecular formula C₆H₁₄ are used to investigate the effect of branching on the physical properties of hydrocarbons.

HYDROCARBON	STRUCTURAL FORMULAE
А	СН ₃ Н ₃ С—СН—СН ₂ —СН ₂ -СН ₃
В	H ₃ C CH ₃ CH ₃ CH ₃ CH ₃
С	$\begin{array}{c} CH_3 \\ H_3C \begin{array}{c} -CH_3 \\ C \\ -CH_3 \end{array}$

The results obtained for the first TWO investigations are shown in the table below.

HYDROCARBON	INVESTIGATION 1	INVESTIGATION 2
MBROGARBOR	MELTING POINT (°C)	BOILING POINT (°C)
Α	-154	60
В	-129	58
C	-100	50

- 3.1 Define the term *melting point*. (2)
- 3.2 Write down the independent variable for INVESTIGATION 1. (1)
- 3.3 Explain why these three organic compounds are called structural isomers. (2)
- 3.4 Write down the type of intermolecular forces present between molecules of these isomers. (1)
- 3.5 Explain the difference in melting points between molecules **A** and **B**. (4)

PHYSICAL SCIENCES: CHEMISTRY	Y	10
(PAPER 2) 10842/23		10

For INVESTIGATION 3, the vapour pressure (in mmHg) measured at 25 $^{\circ}$ C, is shown in the table below:

VAPOUR PRESSURE (mmHg)			
235 319 211			

3.6 Using the information of INVESTIGATION 2 and INVESTIGATION 3, match the correct vapour pressure with the appropriate molecule (A – C). Write down the letters (A – C) below each other with the corresponding vapour pressure next to each letter.

(2)

3.7 Fully explain the answer in QUESTION 3.6.

(3) **[15]**

PHYSICAL SCIENCES: CHEM	STRY 11
(PAPER 2) 108	12/23

QUESTION 4 (Start on a new page.)

The flow diagram below shows how ethene can be used to prepare various organic compounds. The letters **A** to **F** represent different organic reactions.

4.1 Identify the type of reaction represented by:

- 4.2 Write down TWO reaction conditions for reaction **B**. (2)
- 4.3 For reaction **A**, write down the:
 - 4.3.1 NAME of the inorganic reactant (1)
 - 4.3.2 CHEMICAL FORMULA of the catalyst needed (1)
- 4.4 For reaction **C**:
 - 4.4.1 Use STRUCTURAL FORMULAE and write down a balanced chemical equation. (3)
 - 4.4.2 Explain why no water should be present during this reaction. (1)

PHYSICAL SCIENCE	S: CHEMISTRY	12
(PAPER 2)	10842/23	12

4.5 Reaction **E** represents the conversion of the alcohol into organic compound **X**.

alkanes.

Write down the: 4.5.1 (1) Type of reaction 4.5.2 CHEMICAL FORMULA of the catalyst needed (1) 4.5.3 STRUCTURAL FORMULA of compound X (2) 4.5.4 IUPAC name of compound X (2) 4.6 Reaction **F** takes place in the presence of warm, concentrated NaOH. Use CONDENSED STRUCTURAL FORMULAE and write down a balanced equation for the reaction. (3) 4.7 Large straight-chained alkanes can be catalytically cracked to produce shorter-chained alkenes and branched alkanes which are more suitable for use in petrol. The reaction below indicates the catalytic cracking of octane. $CH_3(CH_2)_6CH_3 \rightarrow CH_2=CH_2 + Compound Y$ 4.7.1 Write down the IUPAC name of compound Y. (1) 4.7.2 Briefly explain why shorter-chained alkenes and branched alkanes are more suitable for use in petrol than large straight-chained

(2) **[22]**

PHYSICAL SCIENCES: CHEMISTRY	42
(PAPER 2) 10842/23	13

QUESTION 5 (Start on a new page.)

The following apparatus was used by a group of learners in an investigation to find out how surface area affects the rate of reaction between excess solid magnesium ribbon and dilute nitric acid with a concentration of 0,05 mol·dm⁻³.

During the reaction, the gas formed is collected in the measuring cylinder. The balanced equation for the reaction is:

$$Mg(s) + 2HNO_3(aq) \rightarrow Mg(NO_3)_2(aq) + H_2(g)$$

The summary of their investigation is tabulated below.

EXPERIMENT	MASS OF MAGNESIUM (g)	STATE OF DIVISION
l	2	Ribbon cut into 5 small pieces
II	2	Ribbon as one large piece

The results for experiment I are plotted on the graph below.

	PHYSIC (PAPER	AL SCIENCES: CHEMISTRY 10842/23	14
5.1	Besides the mass and the volume of the react that must be kept constant during this investig		(1)
5.2	Write down the dependent variable in this inve	estigation.	(1)
5.3	Use the graph to calculate the average rate of between 2 and 2,5 minutes.	f the reaction (in cm ^{3.} s ⁻¹)	(3)
5.4	Will the rate of the reaction at 250 s be GREA EQUAL TO the rate calculated in QUESTION Give a reason for the answer.	•	(2)
5.5	Predict how the gradient of the graph for experiment I. Write down only INCREASE, SAME.	•	(1)
5.6	Calculate the mass of magnesium metal that when the reaction has stopped. Assume that the 24 dm ³ ·mol ⁻¹ at room temperature.		(5)
5.7	Medication used to relieve headaches is avail Use the collision theory to explain why powde tablets.	•	(2) [15]

PHYSICAL SCIENCES: CHEMISTRY	15
(PAPER 2) 10842/23	15

QUESTION 6 (Start on a new page.)

Hydrogen gas is prepared by the reaction of methane and steam, as shown in the following balanced chemical equation:

$$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$$
 $\Delta H = +206 \text{ kJ}$

The methane (CH₄) and steam (H₂O) are sealed in a 2 dm³ container to react and are allowed to reach equilibrium at temperature T.

- 6.1 State Le Chatelier's Principle. (2)
- Use Le Chatelier's principle to explain how the following changes will affect the yield of $H_2(g)$:
 - 6.2.1 Adding more CH₄ (3)
 - 6.2.2 A decrease in the volume of the container (3)

The sketch graph below shows the changes in the number of moles of methane, steam and carbon monoxide as the reaction proceeds for the preparation of H_2 gas in a 2 dm³ container.

- 6.3 Write down a reason why there is no change in the number of moles of each of the gases between times **t**₁ and **t**₂.
- Use the information on the graph and calculate the equilibrium constant, Kc, for this reaction at temperature T. (7)
- The temperature T is **decreased**. How will this change affect the Kc-value for the above reaction? Write only INCREASE, DECREASE or REMAIN THE SAME.

(1) **[17]**

P.T.O.

(1)

PHYSICAL SCIENCE	ES: CHEMISTRY	16
(PAPER 2)	10842/23	16

QUESTION 7 (Start on a new page.)

The balanced equations below represent the ionisation of sulphuric acid in water:

Step 1:
$$H_2SO_4(\ell) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + HSO_4^-(aq)$$

Step 2:
$$HSO_4^-(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + SO_4^{-2}(aq)$$

- 7.1 Is H₂SO₄ a STRONG or WEAK acid? Give a reason for the answer. (2)
- 7.2 Write down the FORMULAE of the conjugated acid-base pairs in step 2. (2)
- 7.3 H_2SO_4 is diprotic. Write down the meaning of the term *diprotic*. (2)
- 7.4 Write down the FORMULA of the ampholyte in the above reaction. (1)
- 7.5 An impure sample of potassium hydroxide pellets with a mass of 11,2 g is added to 0,09 mole of sulphuric acid with a volume of 600 cm³. It reacts according to the balanced chemical equation given below:

$$H_2SO_4(aq) + 2KOH(s) \rightarrow K_2SO_4(aq) + 2H_2O(l)$$

- 7.5.1 Calculate the initial pH of the sulphuric acid used in this reaction. (5)
- 7.5.2 The percentage purity of the potassium hydroxide pellets used is 80%. Calculate the number of moles of pure potassium hydroxide that react with H₂SO₄. (4)
- 7.5.3 Determine which reactant is in excess and hence state whether the final solution is ACIDIC, BASIC or NEUTRAL. (3)

 [19]

PHYSICAL SCIENC	47	
(PAPER 2)	10842/23	17

QUESTION 8 (Start on a new page.)

A galvanic cell is set up using a manganese rod, Mn, and an unknown metal **X**. The initial EMF measured under standard conditions is 1,05 V. The electrons flow from manganese to metal **X** in the external circuit.

8.1		action that occurs in this cell spontaneous? Write down only YES or e a reason for the answer.	(2)
8.2	Which e	lectrode, X or Mn , is the anode?	(1)
8.3	Use cal	culations to identify metal X .	(5)
8.4	For this	cell, write down the:	
	8.4.1	TWO standard conditions	(2)
	8.4.2	Cell notation	(2)
	8.4.3	Reduction half reaction	(2) [14]

PHYSICAL SCIENC	ES: CHEMISTRY	40
(PAPER 2)	10842/23	18

QUESTION 9 (Start on a new page.)

The diagram below represents the purification of copper ore to pure copper. The cell also contains zinc, silver and platinum impurities.

The graph shows the initial relationship between the mass of Cu deposited versus the time.

			PHYSICAL SCIENCES: CHEMISTRY (PAPER 2) 10842/23	19
9.1	Write o	down the energy conversion tha	at takes place in this cell.	(1)
9.2	At whice	ch electrode, A or B , would pure	e copper be deposited?	(1)
9.3	Write o	down the half-reaction that take	s place at the anode.	(2)
9.4		ed until completion? Write only I	affected as the reaction is allowed to NCREASE, DECREASE or REMAIN	(1)
9.5		to the relative strengths of reduce deposited at the cathode.	cing agents to explain why zinc (Zn) will	(3)
9.6		the current flows for 30 minutes the electrodes.	s, 15 g of pure copper was deposited at	
	9.6.1	Calculate the number of mole	s of copper deposited.	(3)
	9.6.2	Determine the number of mole circuit while 15 g of copper is	es of electrons that flows through the deposited.	(2) [13]
			TOTAL	: 150

PHYSICAL SCIENCES: CHEMISTRY (PAPER 2) 10842/23

20

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	$p^{\scriptscriptstyle{\theta}}$	1,013 x 10⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	$T^{\scriptscriptstyle{0}}$	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's' number Avogadro se nommer	Na	6,02×10 ²³

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$				
$c = \frac{n}{V}$ or $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$				
$c_a V_a \over c_b V_b = \frac{n_a}{n_b}$	pH = -log[H3O+]				
$E_{\text{cell}}^{\theta} = E_{\text{cathode}}^{\theta} - E_{\text{anode}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{katode}}^{\theta} - E_{\text{anode}}^{\theta}$					
$E_{\text{cell}}^{\theta} = E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{reduksie}}^{\theta} - E_{\text{oksidasie}}^{\theta}$					
$E_{\text{cell}}^{\theta} = E_{\text{oxidising agent}}^{\theta} - E_{\text{reducing agent}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{oksideermiddel}}^{\theta} - E_{\text{reduseermiddel}}^{\theta}$					

SA Ex	am Pape	rs This p	aper	was d	ownlo	padec	from	saex	ampa	pers.c	o.za
	∑ 18	2 He 4	10 Ne 20	18 40 40	36 7 8	54 Xe 131	86 Rn		71 Lu 175	103 Ľ	
21	47 (<u>V</u> II)		9 19	17 Ce 35,5	35 Br 80	53 - 127	85 At		70 Yb 173	102 No	
SCIENCES: CHEMISTRY 10842/23	16 (VI)		∞ O 6 0,4	32 s 6 3,0 3,0	% Se 7 9 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8	52 Te γ.5 Ω,5	8 G 2,2		69 Tm 169	101 Md	
1084			3,5	2,5	5,4	۲٬۲	2,0	_		0.5	
S: CF	5 (5)		0,£	1,2 5 T E	2,0 2,0 75	51 8b 122	83 9 Bi 7 209		68 Er 167	100 Fm	
ENCE	4 <u>S</u>		9 U Z	14 Si 28	32 Ge 73	50 Sn 119	82 Pb c	_	67 Ho 165	99 Es	
SCIE	, 5		2,5	8,1	8,1	8,1	8,1				
PHYSICAL (PAPER 2)	£ (III)		2,0 2 B 5	13 13 14 13	9,1 7 33	7, r 6 = 1 115	81 ∞, ⊤6 16		66 Dy 163	98 Cf	
HYS	ITS ENTE		00	3 <i>V</i>	30 Zn 6	48 Cd 7	80 Hg °		65 Tb 159	97 Bk	
<u>a</u> n	EMENT LEME				9'1	7,1	% 1 Z			O, III	
	HE PERIODIC TABLE OF ELEMENTS PERIODIEKE TABEL VAN ELEMENTE 1 1 12				29 Cu 63,5	47 Ag 108	79 Au 197		64 Gd 157	96 Cm	
	LE 0 167 v		-	76 -	6'l	6'l 6 9 9	78 Pt 195	<u> </u>	е = S	<u>ه</u> د	
	TAB : <i>TAE</i> 10	sr/ Svmbol/	Simbool	nass assa	8, r 59 <u>×</u> 28	λ,ν Pd 6	78 Pt 195		63 Eu 152	95 Am	
	ODIC DIEKE 9	oer/ // Svn	Sin	atomic mass atoommassa	27 Co 59	45 Rh 103	77 Ir 192	_	62 Sm 150	94 Pu	
	PERI RIOI	umk geta	\	ato ato	8,1	2,2					
	TABLE 3: THE PERIODIC TABLE OF ELEMENTS ABEL 3: DIE PERIODIEKE TABEL VAN ELEMENT 7 8 9 10 11 12		0; Cu 63.5 €	 Approximate relative atomic mass <i> </i> <i>Benaderde relatiewe atoommassa</i>	8,1 26 56	ν,ν 4 Ֆ Έ	76 Os 190		61 Pm	93 0 0	
	TABLE 3: TH TABEL 3: DIE , 7 8	Ato	<u>†</u>	ate re e <i>rela</i>	25 Mn °	7c C	75 Re 186		60 Nd 44	92 U 238	
	TABI ABEL 7	/itv	riteit	xima lerde	۶'۱ 2	6'l					
	6	EY/ <i>SLEUTEL</i> Electro negativity/	Elektronegatiwiteit	λppro 3e <i>nac</i>	Cr 52	42 Mo 96	44 ¥ 8 4		59 Pr 141	91 Pa	
		LEU n	rone		8 > L	- a 2 8,h	S a Z		58 Ce 140	0 4 Z	
	co.	KEY/S <i>LEUTEL</i>	Elekt		9,1 5 > 23	41 Nb 92	73 Ta 181		7 C 5	90 Th 232	
	4	¥			22 ∓ 8	9 Zr 91	72 Hf 179				
	•				۱,5	かい	9'۱		٦		
	က				21 Sc 45	£ ≻ &	57 La 139	89 Ac			
				l - .	٤'١	۲,2		(0	-		
	7 🗐		9 G	12 Mg 24	20 Ca 40	38 S. S.	56 Ba 137	88 Ra 226			
		← I ←	6.1 √ 3,1	2, r	දි ⊼ දි 0,1	37 86 0,↑	55 Cs 133 0,9	75 F 6,0	-		
	- €	1,2	0,1	6'0	8,0	8,0	7,0	۷'0			
				1	P	1777	RS	, = 0	1		
			4								

PHYSICAL SCIENCES: CHEMISTRY (PAPER 2) 10842/23

22

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD REDUKSIEPOTENSIALE

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L TA. OTANDAR		, <u>KLDOKOII</u>	-0 1 L 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Half-reactions	Hali	freaksies	$E^{\theta}(V)$
$\begin{array}{rclrcl} H_2O_2 + 2H^+ + 2e^- & = & 2H_2O & +1,77 \\ MnO_4^- + 8H^+ + 5e^- & = & Mn^{2^+} + 4H_2O & +1,51 \\ & & & & & & & & & & & & & & & & & & $	F ₂ (g) + 2e ⁻	=	2F-	+ 2,87
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Co ³⁺ + e ⁻	\Rightarrow	Co ²⁺	+ 1,81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$H_2O_2 + 2H^+ + 2e^-$	=	2H₂O	+1,77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_ MnO ₄ + 8H ⁺ + 5e ⁻	=	$Mn^{2+} + 4H_2O$	+ 1,51
6e	Cl ₂ (g) + 2e ⁻	=	2Cℓ ⁻	+ 1,36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	2H₂O	+ 1.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=		
$\begin{array}{rclrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		=		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_			
$Fe^{3+} + e^{-} = Fe^{2+} + 0,77$ $O_2(g) + 2H^+ + 2e^{-} = H_2O_2 + 0,68$ $I_2 + 2e^{-} = 2I^- + 0,54$ $Cu^+ + e^{-} = Cu + 0,52$ $SO_2 + 4H^+ + 4e^{-} = S + 2H_2O + 0,45$ $2H_2O + O_2 + 4e^{-} = 4OH^- + 0,40$ $Cu^{2+} + 2e^{-} = Cu + 0,17$ $Cu^{2+} + e^{-} = Cu^+ + 0,16$ $Sn^{4+} + 2e^{-} = Sn^{2+} + 0,15$ $S + 2H^+ + 2e^{-} = Sn^{2+} + 0,15$ $S + 2H^+ + 2e^{-} = H_2S(g) + 0,00$ $Fe^{3+} + 3e^{-} = Fe + 0,06$ $Pb^{2+} + 2e^{-} = Ni + 0,16$ $Sn^{2+} + 2e^{-} = Ni + 0,16$ $Sn^{2+} + 2e^{-} = Re + 0,00$ $Pb^{2+} + 2e^{-} = Re + 0,00$ $Pb^{2+} + 2e^{-} = Re + 0,00$ $Co^{2+} + 2e^{-} = Co + 0,00$ $Co^{2+} + 2e^{-} = Co + 0,00$ $Cr^{3+} + e^{-} = Cr^{2+} + 0,11$ $Fe^{2+} + 2e^{-} = Re + 0,00$ $Cr^{3+} + e^{-} = Cr^{2+} + 0,11$ $Fe^{2+} + 2e^{-} = Re + 0,00$ $Cr^{3+} + e^{-} = Cr^{2+} + 0,11$ $Fe^{2+} + 2e^{-} = Re + 0,00$ $Cr^{3+} + e^{-} = Cr^{2+} + 0,11$ $Fe^{2+} + 2e^{-} = Re + 0,00$ $Cr^{3+} + e^{-} = Cr^{2+} + 0,11$ $Fe^{2+} + 2e^{-} = Re + 0,00$ $Cr^{3+} + e^{-} = Cr^{2+} + 0,00$ $Cr^{3+} + 2e^{-} = Re +$			-	
$\begin{array}{rclrclclclclclclclclclclclclclclclclclc$		=		+ 0.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ 2H_{2}O + O_{2} + 4e^{-} = 4OH^{-} \\ Cu^{2^{+}} + 2e^{-} = Cu $ $+ 0,34 $ $ 2O_{4}^{2} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O $ $+ 0,17 $ $+ 0,16 $ $+ 0,15 $ $+ 0,15 $ $+ 0,15 $ $+ 0,15 $ $+ 0,15 $ $+ 0,14 $ $+ 0,16 $ $+ 0,15 $ $+ 0,15 $ $+ 0,14 $ $+ 0,16 $ $+ 0,15 $ $+ 0,14 $ $+ 0,16 $ $+ 0,15 $ $+ 0,14 $ $+ 0,16 $ $+ 0,15 $ $+ 0,14 $ $+ 0,16 $ $+ 0,15 $ $+ 0,14 $ $+ 0,16 $ $+ 0,15 $ $+ 0,14 $ $+ 0,16 $ $+ 0,15 $ $+ 0,14 $ $+ 0,16 $ $+ 0,15 $ $+ 0,16 $ $+ 0,16 $ $+ 0,15 $ $+ 0,16 $ $+ 0,17 $ $+ 0$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-	
$SO_{4}^{2-} + 4H^{+} + 2e^{-} = SO_{2}(g) + 2H_{2}O$ $Cu^{2^{+}} + e^{-} = Cu^{+}$ $Sn^{4^{+}} + 2e^{-} = Sn^{2^{+}}$ $S + 2H^{+} + 2e^{-} = H_{2}S(g)$ $2H^{+} + 2e^{-} = H_{2}(g)$ $Fe^{3^{+}} + 3e^{-} = Fe$ $Pb^{2^{+}} + 2e^{-} = Pb$ $Sn^{2^{+}} + 2e^{-} = Pb$ $Sn^{2^{+}} + 2e^{-} = Ni$ $Sn^{2^{+}} + 2e^{-} = Ni$ $Co^{2^{+}} + 2e^{-} = Co$ $Cd^{2^{+}} + 2e^{-} = Cd$ $Cf^{3^{+}} + e^{-} = Cr^{2^{+}}$ $Fe^{2^{+}} + 2e^{-} = Fe$ Cr $Cr^{3^{+}} + e^{-} = Cr^{2^{+}}$ $Cr^{3^{+}} + 3e^{-} = Cr$ $2H_{2}O + 2e^{-} = H_{2}(g) + 2OH^{-}$ $Cr^{2^{+}} + 2e^{-} = Mn$ $Al^{3^{+}} + 3e^{-} = Al$ $Rl^{3^{+}} + 3e^{-} = Al$ $Rl^{3^{+}} + 3e^{-} = Rl$ $Rl^{3^{+}} + 3e^{-} =$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{rclrclcrclcrclcrclcrclcrclcrclcrclcrclc$		=		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		#		
$Sn^{2+} + 2e^- = Sn$ $-0,14$ $Ni^{2+} + 2e^- = Ni$ $-0,27$ $Co^{2+} + 2e^- = Co$ $-0,28$ $Cd^{2+} + 2e^- = Cd$ $-0,40$ $Cr^{3+} + e^- = Cr^{2+}$ $-0,41$ $Fe^{2+} + 2e^- = Fe$ $-0,44$ $Cr^{3+} + 3e^- = Cr$ $-0,74$ $Zn^{2+} + 2e^- = Zn$ $-0,76$ $2H_2O + 2e^- = H_2(g) + 2OH^ -0,83$ $Cr^{2+} + 2e^- = Cr$ $-0,91$ $Mn^{2+} + 2e^- = Mn$ $-1,18$ $At^{3+} + 3e^- = At^2$ $-1,66$ $Mg^{2+} + 2e^- = Mg$ $-2,36$ $Na^+ + e^- = Na$ $-2,71$ $Ca^{2+} + 2e^- = Ca$ $-2,87$ $Sr^{2+} + 2e^- = Sr$ $-2,89$ $Ba^{2+} + 2e^- = Ba$ $-2,90$ $Cs^+ + e^- = Cs$ $-2,92$ $K^+ + e^- = K$		\Rightarrow		
$\begin{array}{rclrcl} Ni^{2+} + 2e^- & = & Ni & -0,27 \\ Co^{2+} + 2e^- & = & Co & -0,28 \\ Cd^{2+} + 2e^- & = & Cd & -0,40 \\ Cr^{3+} + e^- & = & Cr^{2+} & -0,41 \\ Fe^{2+} + 2e^- & = & Fe & -0,44 \\ Cr^{3+} + 3e^- & = & Cr & -0,74 \\ Zn^{2+} + 2e^- & = & Zn & -0,76 \\ 2H_2O + 2e^- & = & H_2(g) + 2OH^- & -0,83 \\ Cr^{2+} + 2e^- & = & Cr & -0,91 \\ Mn^{2+} + 2e^- & = & Mn & -1,18 \\ A\ell^{3+} + 3e^- & = & A\ell & -1,66 \\ Mg^{2+} + 2e^- & = & Mg & -2,36 \\ Na^+ + e^- & = & Na & -2,71 \\ Ca^{2+} + 2e^- & = & Ca & -2,87 \\ Sr^{2+} + 2e^- & = & Sr & -2,89 \\ Ba^{2+} + 2e^- & = & Ba & -2,90 \\ Cs^+ + e^- & = & Cs & -2,92 \\ K^+ + e^- & = & K & -2,93 \\ \end{array}$		=	Pb	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	Sn	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	Ni	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	Со	
$\begin{array}{rclcrcl} Fe^{2^+} + 2e^- & = & Fe \\ Cr^{3^+} + 3e^- & = & Cr \\ Zn^{2^+} + 2e^- & = & Zn \\ 2H_2O + 2e^- & = & H_2(g) + 2OH^- \\ Mn^{2^+} + 2e^- & = & Cr \\ Mn^{2^+} + 2e^- & = & Mn \\ A\ell^{3^+} + 3e^- & = & A\ell \\ Mg^{2^+} + 2e^- & = & Mg \\ Na^+ + e^- & = & Na \\ Ca^{2^+} + 2e^- & = & Ca \\ Sr^{2^+} + 2e^- & = & Sr \\ Sr^{2^+} + 2e^- & = & Sr \\ Ca^{2^+} + 2e^- & = & Sr \\ Ca^{$		=	Cd	- 0,40
$\begin{array}{rclcrcl} Cr^{3+} + 3e^{-} & = & Cr \\ Zn^{2+} + 2e^{-} & = & Zn \\ 2H_2O + 2e^{-} & = & H_2(g) + 2OH^{-} \\ Cr^{2+} + 2e^{-} & = & Cr \\ Mn^{2+} + 2e^{-} & = & Mn \\ At^{3+} + 3e^{-} & = & A\ell \\ Mg^{2+} + 2e^{-} & = & Mg \\ Na^{+} + e^{-} & = & Na \\ Ca^{2+} + 2e^{-} & = & Ca \\ Sr^{2+} + 2e^{-} & = & Sr \\ Sr^{2+} + 2e^{-} & = & Ba \\ Cs^{+} + e^{-} & = & Cs \\ K^{+} + e^{-} & = & K \\ \end{array}$		=	Cr ²⁺	- 0,41
$\begin{array}{rclcrcl} Zn^{2+} + 2e^- & = & Zn & -0.76 \\ 2H_2O + 2e^- & = & H_2(g) + 2OH^- & -0.83 \\ Cr^{2+} + 2e^- & = & Cr & -0.91 \\ Mn^{2+} + 2e^- & = & Mn & -1.18 \\ A\ell^{3+} + 3e^- & = & A\ell & -1.66 \\ Mg^{2+} + 2e^- & = & Mg & -2.36 \\ Na^+ + e^- & = & Na & -2.71 \\ Ca^{2+} + 2e^- & = & Ca & -2.87 \\ Sr^{2+} + 2e^- & = & Sr & -2.89 \\ Ba^{2+} + 2e^- & = & Ba & -2.90 \\ Cs^+ + e^- & = & Cs & -2.92 \\ K^+ + e^- & = & K & -2.93 \end{array}$		\Rightarrow	Fe	- 0,44
$\begin{array}{rclcrcl} 2H_2O + 2e^- & = & H_2(g) + 2OH^- \\ Cr^{2^+} + 2e^- & = & Cr \\ Mn^{2^+} + 2e^- & = & Mn \\ A\ell^{3^+} + 3e^- & = & A\ell \\ Mg^{2^+} + 2e^- & = & Mg \\ Na^+ + e^- & = & Na \\ Ca^{2^+} + 2e^- & = & Ca \\ Sr^{2^+} + 2e^- & = & Sr \\ Ba^{2^+} + 2e^- & = & Ba \\ Cs^+ + e^- & = & Cs \\ K^+ + e^- & = & K \\ \end{array} \begin{array}{rclcrcl} -0.83 \\ -0.91 \\ -0.91 \\ -0.91 \\ -0.92 \\ -0.93 \\ -$		\rightleftharpoons	Cr	- 0,74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
$\begin{array}{rclrcl} Mn^{2^{+}} + 2e^{-} & = & Mn & -1,18 \\ A\ell^{3^{+}} + 3e^{-} & = & A\ell & -1,66 \\ Mg^{2^{+}} + 2e^{-} & = & Mg & -2,36 \\ Na^{+} + e^{-} & = & Na & -2,71 \\ Ca^{2^{+}} + 2e^{-} & = & Ca & -2,87 \\ Sr^{2^{+}} + 2e^{-} & = & Sr & -2,89 \\ Ba^{2^{+}} + 2e^{-} & = & Ba & -2,90 \\ Cs^{+} + e^{-} & = & Cs & -2,92 \\ K^{+} + e^{-} & = & K & -2,93 \end{array}$	2H ₂ O + 2e ⁻	=	$H_2(g) + 2OH^-$	- 0,83
$A\ell^{3+} + 3e^{-} = A\ell$ - 1,66 $Mg^{2+} + 2e^{-} = Mg$ - 2,36 $Na^{+} + e^{-} = Na$ - 2,71 $Ca^{2+} + 2e^{-} = Ca$ - 2,87 $Sr^{2+} + 2e^{-} = Sr$ - 2,89 $Ba^{2+} + 2e^{-} = Ba$ - 2,90 $Cs^{+} + e^{-} = Cs$ - 2,92 $K^{+} + e^{-} = K$ - 2,93	Cr ²⁺ + 2e ⁻	=	Cr	- 0,91
$Mg^{2^{+}} + 2e^{-} = Mg$	Mn ²⁺ + 2e ⁻	=	Mn	- 1,18
$Na^{+} + e^{-} = Na$	Aℓ³+ + 3e-	=	Αl	- 1,66
$\begin{array}{rclcrcl} Ca^{2+} + 2e^{-} & = & Ca & -2,87 \\ Sr^{2+} + 2e^{-} & = & Sr & -2,89 \\ Ba^{2+} + 2e^{-} & = & Ba & -2,90 \\ Cs^{+} + e^{-} & = & Cs & -2,92 \\ K^{+} + e^{-} & = & K & -2,93 \end{array}$	Mg ²⁺ + 2e ⁻	\Rightarrow	Mg	- 2,36
$Sr^{2+} + 2e^{-} = Sr$	Na ⁺ + e ⁻	\Rightarrow	Na	- 2,71
$Sr^{2+} + 2e^{-} = Sr$	Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
$Cs^+ + e^- = Cs$ $-2,92$ $K^+ + e^- = K$ $-2,93$	Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	
$Cs^{+} + e^{-} = Cs$	Ba ²⁺ + 2e ⁻	\Rightarrow	Ва	- 2,90
	Cs⁺ + e⁻	=	Cs	
	K ⁺ + e ⁻	=	K	- 2,93
	Li ⁺ + e ⁻	=	Li	

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

PHYSICAL SCIENCES: CHEMISTRY (PAPER 2) 10842/23

23

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD REDUKSIEPOTENSIALE

Half-reactions/	E θ (V)		
Li⁺ + e⁻	#	Li	- 3,05
K⁺ + e⁻	=	K	- 2,93
Cs⁺ + e⁻	\Rightarrow	Cs	- 2,92
Ba²+ + 2e⁻	=	Ва	- 2,90
Sr ²⁺ + 2e⁻	=	Sr	- 2,89
Ca²+ + 2e⁻	\Rightarrow	Ca	- 2,87
Na⁺ + e⁻	=	Na	- 2,71
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Aℓ³+ + 3e⁻	\Rightarrow	Αl	- 1,66
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18
Cr ²⁺ + 2e⁻	=	Cr	- 0,91
2H ₂ O + 2e⁻	=	H ₂ (g) + 2OH ⁻	- 0,83
Zn²+ + 2e⁻	=	Zn	- 0,76
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44
Cr³+ + e⁻	=	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Co ²⁺ + 2e ⁻	=	Со	- 0,28
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
Sn²+ + 2e⁻	=	Sn	- 0,14
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06
2H⁺ + 2e⁻	=	H ₂ (g)	0,00
S + 2H ⁺ + 2e ⁻	=	H ₂ S(g)	+ 0,14
Sn ⁴⁺ + 2e⁻	=	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16
2- SO ₄ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
2H ₂ O + O ₂ + 4e⁻	=	4OH⁻	+ 0,40
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45
Cu⁺ + e⁻	=	Cu	+ 0,52
l ₂ + 2e ⁻	=	21-	+ 0,54
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H ₂ O ₂	+ 0,68
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77
NO $_3^-$ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80
Ag⁺ + e⁻	=	Ag	+ 0,80
Hg ²⁺ + 2e⁻	=	Hg(ℓ)	+ 0,85
NO $_3^-$ + 4H ⁺ + 3e ⁻	=	$NO(g) + 2H_2O$	+ 0,96
$Br_2(\ell) + 2\mathrm{e}^-$	\Rightarrow	2Br ⁻	+ 1,07
Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20
MnO ₂ + 4H ⁺ + 2e ⁻	=	Mn ²⁺ + 2H ₂ O	+ 1,23
O ₂ (g) + 4H ⁺ + 4e ⁻	\rightleftharpoons	2H ₂ O	+ 1,23
2- Cr ₂ O ₇ + 14H ⁺ + 6e ⁻	=	$2Cr^{3+} + 7H_2O$	+ 1,33
Cℓ₂(g) + 2e⁻	=	2Cℓ ⁻	+ 1,36
_ MnO	=	Mn ²⁺ + 4H ₂ O	+ 1,51
H ₂ O ₂ + 2H⁺ +2 e⁻	\Rightarrow	2H₂O	+1,77
Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87
F 1900/17 4			

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë