

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2015

MATHEMATICS P2 MEMORANDUM

MARKS:

150

This memorandum consists of 14 pages.

1.1	English HL	42	54	85	32	63	71	92	62	58	66		
	Afrikaans FAL	50	58	80	45	60	65	98	75	71	58		
	5	Scatter	r Plot f	for En	glish I	HL and	d FAL	. Mar	ks				
	110 - S												
	- 08 ge											$\checkmark \checkmark \checkmark$ plotting	
	bu 70 -					•						all ten points	
	[Par 60 -				/	\checkmark						(
	⁵⁰			>	/							v regression line	
	V S S S S S S S S S S			/									
	if 20 -	/											
	10 -												
	U U U U) 10	20	30	40	50 6	50 70	D 80) 90) 10	0		
			Eng	lish H	Iome	Langu	uage I	Mark	S				
													(4)
1.2	<i>a</i> = 18,0356	63										✓ value for A	
	b = 0,7674 y = 18,04	29 +0,77	x									✓ value for B ✓ equation	(3)
1.3	r = 0.88											✓✓Answer	
1.0	. 0,00												(2)
1.4	Strong posi	tive co	orrelat	ion.								✓Answer	
	OR Linear OR If learn	trend er got	high 1	narks	in En	glish t	hen th	ney w	ould	achie	eve		
	similar mar	ks in A	Afrika	ans									(1)
1.5	74% Accept ans	wers f	rom 7	3 to 7:	5							✓ ✓ Answer	(2)
	F · · · · ~											1	[12]

2.1	$\bar{x} = \frac{\sum x}{n} \\ = \frac{1155}{20} \\ = 57,75 \\ \sigma = (6,737)^2 \\ = 45,39$	 ✓ Answer ✓ square of variance ✓ Answer 	
	Answer only: Full Marks		(3)
2.2.1	22 students	✓ Answer	(1)
2.2.2	$\bar{x} = \frac{\sum x}{n}$ $= \frac{1320}{22}$ $= 60$	✓ substitution✓ Answer	
	Answer only: Full Marks		(2)
2.2.3	$\sigma = \sqrt{\frac{1012}{22}}$ $= 6,782$	✓ substitution ✓ Answer	
	Answer only: Full Marks		(2)
2.3	$\frac{1155 + 5x}{25} = 60$ 1155 + 5x = 1500 5x = 345 x = 69 Each boy must be 69 kg	$\checkmark \frac{1155 + 5x}{25} = 60$	
			(2)
			[10]

-

QUESTION 3

3.1.1	E = $\left[\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right]$	✓ substitution into correct formula	
	$= \left[\frac{3+5}{2}; \frac{5+3}{2}\right]$ E = (4; 4)	 ✓ co-ordinates of E. 	(2)
3.1.2	$ \frac{m_{AB} = m_{DC}}{\frac{y - y_1}{x - x_1} = \frac{3 - 1}{5 + 1}} \\ \frac{y - 5}{x - 3} = \frac{2}{6} \\ \therefore y - 5 = 2 \& x - 3 = 6 \\ \therefore y = 7 \& x = 9 $	 ✓ equating two gradients. ✓ simplification ✓ co-ordinates for B 	
	B(9; 7) OR x = 9, y = 7 B(9; 7) $\frac{-1+x}{x} = 4$, $\frac{1+y}{x} = 4$	$\frac{\sqrt{\frac{-1+x}{x}} = 4}{\sqrt{\frac{1+y}{x}} = 4}$ \sqrt{co-ordinates for B}	(3)
L			
3.1.3	$F = \frac{-1+5}{2}; \frac{1+3}{2}$ $F = [2; 2]$ $y - y_1 = m(x - x_1)$ $y - 2 = 1(x - 2)$ $y = x - 2 + 2$	 ✓ co-ordinates of F ✓ formula ✓ correct value of m ✓ correct substitution into formula ✓ Answer 	
	y = x $y = x$		(5)
3.2	$m_{\rm DE} = m_{\rm EG}$ $\frac{2,5-4}{t+1-4} = \frac{3}{5}$ $\frac{-1,5}{t-3} = \frac{3}{5}$	 ✓ equating gradients ✓ correct substitution 	
	3t - 9 = -7,5 3t = 1,5 t = 0,5	✓ simplification✓ answer	(4)

Г

3.3	$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		
	$=\sqrt{(9-3)^2 + (7-5)^2}$	\checkmark substitution in	
	$=\sqrt{(5+5)} + (7+5)$	formula	
	$-\sqrt{40}$	✓ answer	
	$=\sqrt{(-1-3)^2 + (1-5)^2}$,	
	$=\sqrt{32}$	✓ answer	
	\therefore ABCD is NOT a rhombus because AB \neq AD	✓ statement	
		✓ reason	
	OR		
	$m_{AC} = \frac{y_2 - y_1}{x_1 - x_2}$		
	$x_2 - x_1$	✓ substitution in	
	_ 5-3	formula	
	$-\frac{1}{3-5}$	/	
	$= -\frac{2}{3}$	• answer	
	$m_{\text{DR}} = \frac{3}{2}$	d anamon	
	¹¹¹ _{DB} ⁻ ₅ 2 3	• answer	
	$m_{AC} \times m_{DB} = -\frac{2}{3} \times \frac{3}{5}$		
	$=-\frac{2}{2}$		
	5 + _1		
	\neq 1 : ABCD is not a rhombus because:	✓ statement	
	$m_{\rm LC} \times m_{\rm DD} \neq -1$	✓ reason	
	$m_{AC} \land m_{DB} \leftarrow 1$	100001	(5)
			[19]
			[ניו]

4.1	$r^2 = (3+1)^2 + (1-4)^2$	\checkmark use of distance formula	
	= 16 + 9	(²) 25	
	$r^{-} = 25$	\mathbf{v} $r = 25$	
	r = 3	✓ ✓ substituting values into	
	$(x-a)^2 + (y-b)^2 = r^2$	formula	
	$(x+1)^2 + (y-4)^2 = 25$		(4)
4.2	$N\widehat{Q}M = 90^{\circ}$ [angle subtended by diameter]	✓answer	(1)
4.3	$(m_{\rm NO})$. $(m_{\rm OM}) - 1$		
		\checkmark substitution into formula	
	y - 7 $y - 1$	for perpendicular gradients	
	$\left \frac{y}{x+5} \times \frac{y}{x-3}\right = -1$	for perpendicular gradients	
	x+3 $x-3$		
	0 - 7 0 - 1		
	$\left \frac{x+5}{x+5} \times \frac{x-3}{x-3}\right = -1$		
	7 -1	\checkmark simplification and solving	
	$\left \frac{1}{r+5} \times \frac{1}{r+5}\right = -1$	trinomial	
	$x^2 + 2x - 15 = -7$	\checkmark coordinates of O	
	$x^{2} + 2x - 8 = 0$		
	(x + 4)(x - 2) = 0		
	x = -4 $x = 2$		
	O(-4; 0)		(2)
			(3)
ΔΔ	$y_2 - y_1$		
7.7	$m_{\rm MN} = \frac{1}{x_2 - x_1}$		
	$=\frac{7-1}{7-2}$	• substitution in formula	
	-5-3		
	6 _ 3	✓answer	
	$=\frac{-8}{-8}=-\frac{-4}{4}$		(2)
4.5		Cradient of MI	
	$m_{\rm MN} = -\frac{3}{4}$	• Gradient of MIN	
	$\tan \theta = \frac{4}{3}$		
	$\tan \theta = -\frac{1}{4}$	(makes of 2	
	$\theta = 180^{\circ} - 36,86^{\circ}$	\checkmark value of θ	
	$\theta = 143,13^{\circ}$		
		✓ Gradient of OM	
	$m_{\rm OM} = \frac{1-0}{1-1}$		
	$\tan \beta = \frac{1}{7}$	a value of 0	
	$\beta = 8,13^{\circ}$	• value of p	
	$\alpha = 143,13^{\circ} - 98,13^{\circ}$	i value of a	
	$\alpha = 45^{\circ}$	• value of α	
			(5)

4.6	$m_{\rm MP} = \frac{4-1}{-1-3} = -\frac{3}{4}$	$\checkmark m_{\rm MP}$	
	$m_{tan} = \frac{4}{3}$ y - y ₁ = m(x - x ₁) y - 1 = $\frac{4}{3}(x - 3)$ 4	✓ m _{tan} ✓ substitution in formula	
	$y = \frac{1}{3}x - 4 + 1$ $y = \frac{4}{3}x - 3$	✓ simplification ✓ answer	(5)
			[20]

5.1	$\cos 75^{\circ} + \cos 15^{\circ} = \cos(45^{\circ} + 30^{\circ}) + \cos(45^{\circ} - 30^{\circ})$ $= 2\cos 45^{\circ} \cdot \cos 30^{\circ}$ $= 2\left(\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2}\right)$ $= \frac{\sqrt{6}}{2}$	 ✓ expression in terms of 30 and 45⁰ ✓ use of compound identity ✓ substitution of values 	(4)
		• answer.	(4)
5.2	$1 + 4 \sin^{2} A - 5 \sin A + \cos 2A = 0$ $1 + 4 \sin^{2} A - 5 \sin A + 1 - 2 \sin^{2} A = 0$ $2 \sin^{2} A - 5 \sin A + 2 = 0$ $(2 \sin A - 1)(\sin A - 2) = 0$ $2 \sin A = 1 \text{ or } \sin A = 2 \text{ (no solution)}$ $\sin A = \frac{1}{2}$ $A = 30^{\circ} + k.360$ $A = 150^{\circ} + k.360^{\circ}; k \in z$	 ✓ cos 2A in terms of Sin A ✓ standard form ✓ factors ✓ for each value of sin A ✓ gen. sol in 1st quadrant ✓ gen. sol in 2nd quadrant ✓ gen. sol notation 	(7)

5.3	$\frac{\sin 2A}{1 + \cos 2A} = \tan A$ $LHS = \frac{2 \sin A \cdot \cos A}{1 + 2 \cos^2 A - 1}$ $= \frac{2 \sin A \cdot \cos A}{2 \cos^2 A}$	 ✓ double angle identity for sin2A ✓ double angle identity for cos 2A 	
	$= \frac{\sin A}{\cos A}$ $= \tan A$ LHS = RHS	✓ LHS = RHS	(3)
5.4	$\frac{\cos x \tan x \sin 23^{\circ} \cos 23^{\circ}}{\sin 46^{\circ}(-\sin x)}$ $\frac{\cos x \cdot \frac{\sin x}{\cos x} \cdot \sin 23^{\circ} \cdot \cos 23}{-2 \sin 23^{\circ} \cos 23^{\circ} \cdot \sin x}$ $-\frac{1}{2}$	$\checkmark \cos x$ $\checkmark \tan x$ $\checkmark \sin 46^{\circ}$ $\checkmark - \sin x$ $\checkmark \frac{\sin x}{\cos x}$ $\checkmark 2 \sin 23^{\circ} \cos 23^{\circ}$	(6)
			[20]

6.1	120°	✓ answer.	(1)
6.2		$ \begin{array}{c} f \\ \checkmark x \text{-int} \\ \checkmark y \text{-int} \\ \checkmark turning \\ point \end{array} $	
		g ✓ x-int ✓ y-int ✓ turning point	(6)
			(0)
6.3	6.3.1 $x \in (30^\circ; 90]$	✓ both values correct ✓ correct notation	(2)
	6.3.2 $x \in (-90^\circ; -30^\circ)$	 ✓ both values correct ✓ correct notation 	(2)
			, <i>, ,</i>
6.4	$-4 \le y \le 0.5$ OR $[4 + 0.5]$	✓ interval✓ values	
	[-4;0,5]	<u> </u>	(2) [13]

7.1			
	$In \Delta CBE$	✓ ratio for sin	
	\underline{CE} — sin $C\hat{B}E$		
	$\frac{BC}{BC}$ = SINCDE		
		\checkmark simplification and	
	СЕ	sub stitution	
	$BC = \frac{1}{\sin \hat{p}}$	substitution	
	3		
	$=\frac{1}{1000}$	✓ Answer	
	SIII 16,7°		
	BC = 10,44		(3)
7.2			
	$In \Delta ABC$		
	AP BC	\checkmark use of sine rule	
	$\frac{AD}{AD} = \frac{AD}{AD}$	• use of sine fulle	
	$\sin C$ $\sin A$		
	$BC \sin \hat{C}$	ainenlification and	
	$AB = \frac{BC \cdot SHC}{C}$	• simplification and	
	sin A	substitution	
	$10,44.\sin 32,3^{\circ}$		
	$AB = \frac{1}{1}$		
	$AB = 17,96^{\circ}$	✓ answer	(3)
7.3	AD ^	\checkmark ratio for sin	
	$\frac{1}{AB} = \sin CBD$		
	AD	d simulification 0	
		• simplification &	
	$AD = AB. \sin CBD$	substitution	
	= 17,96 sin 33,7°		
	AD = 9.96m	✓ answer	
	AD = 10m		(3)
			[9]

8.1.1	$\hat{T}_2 = x$ [OS = OT, radii]	✓S/R	
	$\hat{O}_1 = 180^\circ - 2x$ [sum of \angle 's of \triangle]	✓ S/R	(2)
8.1.2	$\widehat{P} = \frac{\widehat{O}_1}{2} [\angle \text{ at centre} = 2 \times \angle \text{ at circumference}]$	✓ statement and reason	
	$=\frac{100}{2}$ $=90^{\circ}-x$	✓answer	(2)
8.1.3	$\hat{O}_1 = \hat{R}$ [SOQR is parallelogram]or	✓ statement &	
	[opp angles of parallelogram]	reason	
	$\hat{R} = 180^{\circ} - 2x$	✓answer	(2)
8.2	$\hat{O}_1 = \hat{R}$ [opp angles of parallelogram]	\checkmark statement and	
	$180^{\circ} - 2x = 90^{\circ} + x$	reason	
	$3x = 90^{\circ}$	✓ substitution of	
	$x = 30^{\circ}$	values	
		✓ Answer	(3)
			[9]

9.1	$\widehat{M}_1 = \widehat{M}_2 = 90^\circ$ [line from centre to midpoint of chord]	\checkmark M ₂ = 90°	
		✓ reason	
	$\widehat{M}_2 = \widehat{A}$ [given QA [⊥] TA]	\checkmark M ₂ = A & reason	
	$\widehat{M}_2 + \widehat{A} = 180^{\circ}$	\checkmark conclusion and	
	\therefore MTAR is a cyclic quad [opp \angle 's are supplementary]	reason	
			(4)
9.2	In ΔPMR & ΔTMR	\checkmark statement and	
	(i) $M_1 = M_2$ [OR bisects PT]	reason	
	(ii) $PM = MT$ [M is midpoint of PT]	✓ statement and	
	(iii) $MR = MR$ [common]	reason	
		\checkmark statement and	
	$\therefore \Delta PMR \equiv \Delta TMR [SAS]$	reason	
	\therefore PR = TR	✓ SAS	
		✓ conclusion	(5)
9.3	$\widehat{T}_2 = \widehat{P}$ [Tan chord theorem]	$\checkmark \hat{T}_2 = \hat{P}$	
		✓ Tan chord	
	$\widehat{T}_1 = \widehat{T}_2$ [Both equal to P]	✓ conclusion	(3)
			[12]

10.1 Proportional ✓ Answer (1)10.2.1 $A_4 = D_1$ [tan chord theorem] \checkmark statement and $D_1 = x$ reason $D_1 = E_2$ [angles in same segment] \checkmark statement and $E_2 = x$ reason $A_4 = C_2$ [alt int.] ✓ statement and (3) reason 10.2.2 In $\triangle ACF \& \triangle ADC$ \checkmark statement and i) $A_3 = A_3$ [common] reason ii) $C_2 = D_1$ ✓ statement and $\Delta ACF /// \Delta ADC$ [equiangular] reason \checkmark statement and reason (3) $\Delta ACF /// \Delta ADC$ 10.2.3 $\frac{AC}{AD} = \frac{AF}{AC} = \frac{CF}{DC}$ \checkmark sides in proportion $\frac{AC}{AD} = \frac{AF}{AC}$ ✓ choosing correct proportion $AF = \frac{AC.AC}{AD}$ But AC = AO \checkmark simplification $AF = \frac{AO^2}{AD}$ ✓ answer (4)[11]

Copyright reserved

1101			
11.2.1	$\frac{AD}{DD} = \frac{AM}{DU} = \frac{3}{2}$ [Prop. theorem; DE BC]	• answer	
	DB MN 2	✓ reason	(2)
11.2.2	In $\triangle ADE \& \triangle ABC$		
	i) $\widehat{A} = \widehat{A}$ [common]	✓ Corresponding angles	
	ii) $ADE = ABC$ [corresponding: DE BC]	equal	
	: AADE/// A ABC [equiangular]	1	
		✓ showing AADE AABC	
	$\therefore \frac{AD}{AD} = \frac{DE}{DC} = \frac{AE}{AC}$	sides in propertion	
	AB BC AC	• sides in proportion	
	$\frac{AD}{AD} = \frac{DE}{AD} = \frac{3}{AD}$	• answer	
	BC BC 2		
			(4)
11.2.3	area $AADE = \frac{1}{2}DE.AM$		
	$\frac{d c d d h b b}{A A B C} = \frac{2}{1}$	✓ Ratio of areas	
	area $\Delta ABC = \frac{1}{2}BC. AN$		
	3×3	\checkmark substitution of values in	
	$=\frac{1}{5\times 5}$	denominator and	
		numerator	
	9	numerator	
	$=\frac{1}{25}$	simplification and answer	(3)
			(3)
			[15]
		TOTAL	4 =0
	TOTAL:		