

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

FEBRUARY/MARCH 2014

MEMORANDUM

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
CA	Consistent accuracy
A	Accuracy
С	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
О	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off
J	Justification/reason

This memorandum consists of 14 pages.

Ques	STION 1 [31 MARKS] Solution	Explanation	AS/L
1.1.1	Curved area of the cylinder = $2 \times 3{,}14 \times 70 \text{ cm} \times 140 \text{ cm}$ = $61 544 \text{ cm}^2 \checkmark \text{CA}$	1A circumference 1SF substitution 1CA curved area	12.3.1 L3
	Area of wrap = 1,06 cm × 61 544 cm ² \checkmark M = 65 236,64 cm ² \checkmark CA OR	1A increasing by 6% 1M concept 1CA area	
	OR Area of wrap: $\frac{6}{100} \times 61544 \text{ cm}^2 = 3692,64 \text{ cm}^2$ ✓A	OR 1M concept of %	
	∴ Area of wrap = 61 544 cm ² + 3 692,64 cm ² = 65 236,64 cm ² ✓ CA	1A increasing by 6% 1CA area (6)	
1.1.2	Volume = $3.14 \times (70 \text{ cm})^2 \times 140 \text{ cm} \checkmark \text{SF}$ = $2.154.040 \text{ cm}^3 \checkmark \text{CA}$	1SF substitution 1CA simplification	12.3.1 L3
	Total surface area = $2 \times 3.14 \times 70 \text{ cm}(70 \text{ cm} + 140 \text{ cm})$ = $439.6 \text{ cm} \times (210 \text{ cm})$ = $92316 \text{ cm}^2 \checkmark \text{CA}$	1CA simplification	
	Volume: Total surface area = 2 154 040 : 92 316 ✓M = 23,333 : 1	1M writing as a ratio	
	≈ 23 : 1 ✓ CA∴ Mathys' bales do conform. ✓ CA	1CA ratio in required form 1CA conclusion (6)	
1.1.3	Temperature in °F = $\frac{9}{5}$ × 55°+ 32° \checkmark SF	1SF substitution	12.3.2 L4
	= 131° ✓CA	1CA temperature in °F	
	✓CA No, his action was not correct.	1CA verification (3)	
1.2	1^{st} layer = 12 bales ✓ A 2^{nd} layer = 5 bales 3^{rd} layer = 4 bales ✓ A 4^{th} layer = 3 bales ✓ A	1A number of bales in 1 st layer 1A number of bales in 3 rd layer 1A number of bales in	12.1.1 L3
	Total number of bales = $12 + 5 + 4 + 3\checkmark M$ = $24\checkmark CA$	last (4 th) layer 1M adding 1CA simplification (5)	

Ques	Solution	Explanation	AS/L
1.3.1	Max number of days = $\frac{1440 \text{ kg} \checkmark \text{A}}{12 \text{kg/day} \times 10} \checkmark \text{A}$ $= 12 \text{ days} \checkmark \text{CA}$	1A mass of each bale 1A consumption per 10 cows 1CA time taken	12.2.1 L2
	OR	OR	
	Consumption per 10 cows = 12 kg/day × 10 = 120 kg/day ✓A	1A mass of each bale	
	Max number of days = $\frac{1440 \text{kg}}{120 \text{kg/day}} \checkmark \text{A}$	1A consumption per 10 cows	
	= 12 days ✓CA	1CA time taken (3)	
1.3.2	Max number of days = $\frac{\checkmark A}{1440 \text{ kg}}$ $12 \text{ kg/day} \times \text{ number of cows} \checkmark M$ 120	1A correct values used 1M dividing	12.2.1 L3
	$= \frac{120}{\text{number of cows}} \checkmark \text{CA}$ OR	1CA simplified formula	
	Using variables	(3)	
1.3.3	MAXIMUM NUMBER OF DAYS ONE BALE WOULD LAST TO FEED A NUMBER OF COWS		12.2.2 L3
	120 100 100 8xèp Jo . sa quin un	1CA (1; 120) 3CA any other 3 points plotted correctly 1CA joining by means of a smooth curve	
	Number of cows	(5)	
		[31]	

QUESTION 2 [26 MARKS]			
Ques	Solution	Explanation	AS/L
2.1	i = 0,072; n = 5	•	12.1.3 L3
	$A = R650\ 000(1 + 0.072)^{5} \checkmark SF \checkmark A$ $= R920\ 210,7097$ $\approx R920\ 210,71 \checkmark CA$	1A value of i 1SF substitution 1CA price of bus	
2.2.1	= 400 × number of alumni members – 1 00	A 1A multiplying number by	12.2.1 L4
	Using symbols	(2)	
2.2.2	QUARTERLY CONTRIBUTION TOW.	APDS BUVING A	12.2. L3
	(i) (i) (ii) (iii)	✓A A 30 35 40	
	1A point (20; 8 000)	1A for (20; 7 000) indicated by a circle 1A point (35; 13 000) 1A any other correct point between the above two points (7)	
2.2.3	$ \begin{array}{ccc} \checkmark & RG \\ 24 & OR & \frac{8600 + 1000}{400} & \checkmark M \\ & = 24 & \checkmark CA \end{array} $	2RG reading from graph OR 1M calculation 1CA solution (2)	12.2.2 L3

Copyright reserved

Ques	NSC – Memorandum Solution	Explanation	AS/L
Ques	Solution	Explanation	
2.3.1	Total amount deposited = R40 000 \times 20 \checkmark M = R800 000 \checkmark CA Total interest earned = R911 408,73 $-$ R800 000 \checkmark M = R111 408,73 \checkmark CA	1M multiplying by 20 1CA amount deposited 1M subtracting 1CA amount deposited quarterly (4)	12.1.3 L3
2.3.2	Amount contributed by alumni $ \checkmark A \qquad \checkmark A $ $ = (400 \times 18) \times 4 + (400 \times 25 - 1000) \times 12 $ $ + (400 \times 35 - 1000) \times 4 $ $ \checkmark A $ $ = R28 800 + R108 000 + R52 000 $ $ = R188 800 \checkmark CA $ Percentage contribution = $ \frac{R188 800}{R800000} \times 100\% \checkmark M $ $ = 23,6 \% \checkmark CA $ His statement is not valid. $\checkmark O$	1A correct value for 18 members 1A value for 25 members 1A value for 35 members 1A R108 800 1CA amount deposited 1M calculating % 1CA solution 10 conclusion (8)	12.1.2 L2 (3) L3(3) L4(2)
		[26]	

QUES	TION 3 [30 MARKS]		
Ques	Solution	Explanation	AS/L
3.1.1	South East ✓ ✓ A	2A correct direction (2)	12.3.3 L2
3.1.2	Exiting Hallmark, she must: ✓ A * turn left and walk until she reaches the end of the fountain * then turn right passing shop number 9 and then left towards entrance number 3 * then enter Cafe Teen on the right hand side ✓ A	1A first turn and direction 1A destination	12.3.3 L3
	OR	OR	
	Exiting Hallmark, she must: * walk straight passing entrance number 1 ✓ A * then turn left at the corner and walk until she reaches the end of the fountain * then turn left passing shop number 11 and then right towards entrance number 3	1A first turn and direction	
	* enter Cafe Teen on the right hand side ✓ A	1A destination (2)	
3.1.3	Cash 4 U ✓ A	1A correct store (1)	12.3.3 L2
3.1.4	The names are not alphabetical ✓ J	1J alphabetical order	12.4.2 L4
	The shops in the zones are not grouped together ✓ J	1J numerical order (2)	
3.1.5	P(clothing shop) = $\frac{4}{13} \checkmark A$	1A numerator 1A denominator (2)	12.4.5 L2

Ques	Solution	Explanation	AS/L
3.2.1	2,3 m 13,9 m 10,4 m		12.3.1 L2 (3) L3 (2)
	Total floor space = area of rectangle + area of trapezium = length × breadth + $\frac{1}{2}$ (sum of parallels) × height $\checkmark SF \checkmark M$ = 5,8 m × 10,4 m + $\frac{1}{2}$ (2,3 m + 10,4 m) × 8,1 m $\checkmark CA$ = 60,32 m ² + 51,44 m ² = 111,76 m ² $\checkmark CA$ OR	1M calculating height 2SF substitution into correct formulae 2CA simplifying 1CA total floor space OR	
	Total floor space = area of rectangle + area of trapezium = length × breadth + $\frac{1}{2}$ (sum of parallels) × height \sqrt{SF} \sqrt{M} = 13,9 m × 2,3 m + $\frac{1}{2}$ (13,9 m + 5,8 m) × 8,1 m \sqrt{CA} = 31,97 m ² + 79,79 m ² = 111,76 m ² \sqrt{CA} OR 2,3 m 10,4 m	1M calculating height 2SF substitution 2CA simplification 1CA total floor space	
	Total floor space = area of big rectangle + area of smaller rectangle + area of triangle = length × breadth + length × breadth + $\frac{1}{2}$ × base × height	1M calculating height 2SF substitution 2CA simplification 1CA total floor space	

Ques	Solution	Explanation	AS/L
	Total floor space = area of rectangle – area of triangle $= length \times breadth - \frac{1}{2} \times base \times height$ $= 13.9 \text{ m} \times 10.4 \text{ m} - \frac{1}{2} \times 8.1 \text{ m} \times 8.1 \text{m}$ $= 144.56 \text{ m}^2 - 32.805 \text{ m}^2 \checkmark \text{CA}$ $= 111.76 \text{ m}^2 \checkmark \text{CA}$	1M calculating height 2SF substitution 2CA simplification 1CA total floor space (6)	
3.2.2	Note: The dist between the 2 entrances allow for ± 2 mm range		12.3.3 L4
	The one horizontal measurement is 13,9 m On the question paper Hallmark is 1,2 cm \checkmark A On the question paper the distance from the northern entrance door to the southern entrance door is 9,3 cm \checkmark A \therefore total distance = $\frac{9,3}{1,2} \times 13,9 \checkmark$ M $\approx 107,73 \text{ m}$ OR 1,2 cm: 13,9m \checkmark M $\approx 107,73 \text{ m}$ 1 cm = 11,583 m \therefore total distance = 9,3 \times 11,583 $\approx 107,72 \text{ m}$ \therefore the distance is 110 metres \checkmark CA	1A measuring the side 1A measuring the total length 1M using scale and proportion 1CA total distance Note: A range of values from 1 cm to 1,4 cm will be accepted	
	OR The one vertical measurement is 10,4 m On the question paper the side is 0,9 cm ✓ A On the question paper the distance from the northern entrance door to the southern entrance door is 9,3 cm ✓ A	1A measuring the side 1A measuring the total length	
	∴ total distance = $\frac{9.3}{0.9} \times 10.4$ OR 0,9 cm : 10,4m ≈ 107,47 m 1cm = 11,555 m	1M using scale and proportion	
	∴ total distance = 9,3 × 11,556 = 107,47m ∴ the distance is 110 metres ✓ CA	Note: A range of values from 0,7 cm to 1,1 cm will be accepted	

Copyright reserved

Ques	Solution	Explanation	AS/L
	The other horizontal measurement is 5,8 m On the question paper Hallmark is 0,5 cm ✓A On the question paper the distance from the northern entrance door to the southern entrance door is 9,3 cm ✓A	1A measuring the side 1A measuring the total length	
	∴ total distance = $\frac{9.3}{0.5} \times 5.8$ ✓ M OR 0.5 cm : 5.8 m ✓ M ≈ 107.88 m 1 cm = 11.6 m	1M using scale and proportion	
	∴ total distance = 9,3 × 11,6 = 107,88m	Note: A range of values from 0,3 cm	
	∴ the distance is 110 metres ✓CAOR	to 0,7 cm will be accepted	
	The other vertical measurement is 2,3 m On the question paper Hallmark is 0,2 cm ✓ A On the question paper the distance from the northern entrance door to the southern entrance door is 9,3 cm ✓ A	1A measuring the side 1A measuring the total length 1M using scale and	
	$\therefore \text{ total distance} = \frac{9.3}{0.2} \times 2.3 \checkmark \text{M} \qquad \text{OR } 0.2 \text{ cm} : 2.3 \text{ m} \checkmark \text{M}$	proportion 1CA total distance	
	≈ 106,95 m 1cm = 11,5 m ∴ total distance = 9,3 × 11,5 ≈ 106,95m ∴ the distance is 110 metres \checkmark CA	Note: A range of values from 0,1 cm to 0,4 cm will be accepted	
		(4)	
3.2.3	The area of the curtain = $3 \times 4 = 12 \text{ m}^2 \checkmark A$	1A curtain area	12.3.2 L4
	The weight of the curtain = $4.7 \text{ kg/m}^2 \times 12 \text{ m}^2$ = $56.4 \text{ kg} \checkmark \text{CA}$	1CA curtain weight	
	Cost of a curtain material = R12,50/kg \times 56,4 kg \checkmark M = R705 \checkmark CA	1M multiplying 1CA cost of curtain material	
	The cost does NOT exceed R800.✓O	1O opinion (5)	
3.3.1	Friday ✓A Data for week 1 only started on Friday ✓ J	1A correct day 1J explanation (2)	12.4.4 L4
3.3.2	The number of people visiting the Mall on Friday, Saturday and Sunday is the highest. ✓ ✓ J	2J correct justification (2)	12.4.4 L4
3.3.3	✓A ✓A Week 4, Thursday	1A correct week 1A correct day (2)	12.4.4 L4
		[30]	

Ques	Solution	Explanation	AS/L
4.1.1	Percentage of blacks = 79,6% ✓A	1A correct percentage	12.1.1 L3
	Black population in 2011 = 79,6% of 51 770 560 \checkmark M = $\frac{79,6}{100} \times 51 770 560$	1M using percentage	
	$= \frac{79.6}{100} \times 51770560$ $= 41209365.76 \checkmark CA$ $\approx 41209366 \text{ or } 41209365 \checkmark R$	1CA black population 1R rounding (up or down) (4)	
4.1.2	Number of whites = $\frac{9.6}{100} \times 44819778$ \checkmark M/A	1M/A using percentage	12.4.1 L2(3) L3(2)
	= 4 302 698,688 ✓ CA	1CA white population	` '
	Number of white males = $\frac{48,36}{100} \times 4\ 302\ 699$ \checkmark M/A	1M/A using percentage of white males	
	= 2 080 785,086 ≈ 2 080 785 ✓ CA	1CA simplification	
	Thandi's calculation is NOT correct. ✓J	1J verification (5)	
4.1.3	Indian population in 2001 = 1 120 494 ✓ A Indian population in 2011 = 1 294 264 ✓ A ✓ I	1A number of Indians in 2001 1A number of Indians	12.4.4 L4
	Thandi's comment is not correct (the population increased)	in 2011 1J conclusion (3)	
4.2.1 (a)	Population in $2001 = 21 \ 434 \ 041 + 23 \ 385 \ 737$ = $44 \ 819 \ 778 \ \checkmark A$	1A population in 2001	12.1.1 L3
	$\mathbf{A} = 44\ 819\ 778 - (14\ 365\ 288 + 2\ 215\ 211)$ $= 28\ 239\ 279\ \checkmark \mathrm{CA}$	1CA simplification (2)	
4.2.1 (b)	Male: female = 1: 1,08 \checkmark M OR 100: 108 \checkmark M \checkmark CA \checkmark CA 48 males and 52 females $= \frac{100}{208} \times 100$ = 48 males \checkmark CA \checkmark 52 females \checkmark CA	1M ratio 1CA males 1CA females	12.1.1 L4
			(3)

Copyright reserved

Ques	Solution	Explanation	AS/L
4.2.2 (a)	Dependency % (in 2011) $= \frac{n + m}{p} \times 100\%$ $= \frac{15100089 + 2765991}{33904480} \times 100\% \checkmark SF$ $= 52,695\%$ $\approx 52,70\%$	1SF substituting correct values 1A simplification	12.4.1 L2
	Dependency % (1996) = $\frac{n + m}{p} \times 100\%$ = $\frac{13766443 + 1934664}{24882465} \times 100\%$ \checkmark SF = $\frac{63,101\%}{63,10\%}$ \checkmark CA Difference = $\frac{63,10\% - 52,70\%}{63,40\%}$ \checkmark CA	1SF substituting correct values 1CA simplification 1CA difference (5)	
4.2.2 (b)	The dependency % decreased because there are more people in the category (P) 15 – 64 years. OR Technology became more advanced. OR Improved medication ✓✓J OR Improvement in health ✓✓J OR The receiving of social grants ✓✓J OR Any other valid reason ✓✓J	2J opinion	12.4.4 L4
4.3.1	Range = $1\ 290 - P$ $\checkmark M \checkmark A$ $569 = 1\ 290 - P \checkmark M \checkmark A$ $OR P = 1\ 290 - 569$ $\therefore P = 721 \checkmark CA$ $= 721 \checkmark CA$	1M concept of range 1A correct values used 1CA solution (3)	12.4.3 L3

12 NSC – Memorandum

Ques	Solution	Explanation	AS/L
4.3.2	Mean \checkmark M \checkmark A $= \frac{814+921+1201+1290+Q+966+864+721+828+829}{10}$ $= \frac{8434+Q}{10}$	1A correct values used 1M concept of Mean	12.4.3 L3
	$936 = \frac{8434 + Q}{10}$ $Q = (936 \times 10) - 8434$	1S simplifying	
	$= 9360 - 8434 \checkmark S$ $= 926 \checkmark CA$	1CA solution (4)	
			12.4.3
4.3.3	721; 814; 828; 829; 864; 921; 926; 966; 1 201; 1 290 ✓ M	1M arranging	L3
	$Median = \frac{864 + 921}{2} \checkmark M$	1M concept of median	
	$= 892,5$ ≈ 893 $\checkmark CA$	1CA solution (3)	
4.3.4	The sample is not representative of all the schools in South Africa.	2J reason	12.4.4 L4
	The sample is too small compared to the number of schools in the country.	2J reason	
	OR		
	Any other suitable reasons.		
		(4)	
		[38]	

Ques	STION 5 [25 MARKS] Solution	Explanation	AS/L
Ques		Laplanation	12.2.1
5.1.1	Loan amount = (Monthly payment \div loan factor) \times 1 000 = (R17 550 \div 13,00) \times 1 000 \checkmark SF	1M subject of formula 1A loan factor 1SF substitution	L3
	= R1 350 000 ✓CA	1CA solution (4)	
5.1.2	She needs to have extra money available per month, for other expenses. ✓✓J	2J reason	12.1.3 L4
	She will pay more on interest. ✓✓J	2J reason	
	OR Any other valid reason	(4)	
5.2.1	STL Bank:	1SF substitution 1A using correct factor 1CA monthly payment 1M multiplying by 240 1CA final amount	12.1.1 12.1.3 12.2.1 L2 (3) L3(2) L4(3)
	Pragashni should rather take STL Bank's deal. ✓O Although the interest rate is higher, the year term is shorter and the total repayment amount is R4 290 000 – R3 672 240 = R617 760 less. ✓✓J	1O choice 2J reason with calculation	
	OR	OR	
	Monthly payment (STL Bank) = $(1\ 100\ 000 \div 1\ 000) \times 13,91$ = R15 301 \checkmark CA \checkmark SF Monthly payment (EP Bank) = $(1\ 100\ 000 \div 1\ 000) \times 13,00$ = R14 300 \checkmark CA	1SF substitution 1A using correct factor 1CA monthly payment 1SF substitution into formula 1CA monthly payment	
	Pragashni should take EP bank his monthly instalment will be reduced by R15 301 – 14 300 = R1 001. $\checkmark \checkmark J$	1O choice 2J reason with calculation (8)	

14 NSC – Memorandum

Ques	Solution	Explanation	AS/L
5.2.2	$Loan factor = \frac{Monthly payment}{Loan amount} \times 1000$	1M manipulation	12.1.3 12.2.1 L4
	$= \frac{\mathbf{R}13\ 255}{\mathbf{R}1\ 100\ 000} \times 1\ 000 \checkmark \text{SF}$	1SF substitution	
	= 12,05 ✓CA	1CA factor	
	∴ the interest rate will be 14,25% over a period of 30 years	1CA interest 1CA period (5)	
5.3	Line C represents a 16% interest rate. ✓ A Line B represents a 14,25% interest rate. ✓ A	1A graph C 1A graph B	12.2.3 L4
	The higher the interest rate, the higher your total repayment will be. $\checkmark \checkmark J$	2J reason	
	OR	OR	
	The higher the interest rate, the steeper the graph. ✓✓J	2J reason (4)	
		[25]	

TOTAL: 150